Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:19:31.380Z Has data issue: false hasContentIssue false

Enhanced Gaussian processes and applications

Published online by Cambridge University Press:  04 July 2009

Laure Coutin
Affiliation:
Map5, Université Paris Descartes, Paris, France; [email protected]
Nicolas Victoir
Affiliation:
Map5, Université Paris Descartes, Paris, France; [email protected]
Get access

Abstract

We propose some construction of enhanced Gaussian processes usingKarhunen-Loeve expansion. We obtain a characterization and somecriterion of existence and uniqueness. Using rough-path theory, wederive some Wong-Zakai Theorem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ph. Biane, M. Yor, Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré 23 (1987) 359377.
Borell, C., On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191203.
P. Cheridito and Nualart, D. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter $H \in (0,\frac{1}{2}).$ Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049–1081.
L. Coutin, An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math. 1899 (2007) 3–65. Springer, Berlin.
Coutin, L. and Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 (2002) 108140. CrossRef
Coutin, L., Friz, P. and Victoir, N., Good rough path sequences and applications to anticipating calculus. Ann. Probab. 35 (2007) 11721193. CrossRef
Decreusefond, L., Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré 41 (2005) 123149. CrossRef
Decreusefond, L. and Üstünel, A.S., Stochastic Analysis of the Fractional Brownian Motion. Potential Anal. 10 (1997) 177214. CrossRef
Fernique, X.M., Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math. 480 (1974) 196.
Friz, P. and Victoir, N., Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré 41 (2005) 703724. CrossRef
Lejay, A., Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math. 1832 (2003) 159. CrossRef
P. Levy, Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171–186, Univ. of California.
Lyons, T., Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215310. CrossRef
T. Lyons and Z. Qian, System Control and Rough Paths, Oxford University Press (2002).
A. Millet and M. Sanz-Sole, Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab. 59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353.
Pipiras, V. and Taqqu, M.S., Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli 7 (2001) 873897. CrossRef