Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T09:01:45.477Z Has data issue: false hasContentIssue false

Conditional principles for random weighted measures

Published online by Cambridge University Press:  15 November 2005

Nathael Gozlan*
Affiliation:
Université Paris 10-Nanterre, équipe MODAL'X, UFR SEGMI, 200 avenue de la République, 92001 Nanterre, Cedex, France; [email protected]
Get access

Abstract

In this paper, we prove a conditional principle of Gibbs type forrandom weighted measures of the form ${L_n=\frac{1}{n}\sum_{i=1}^nZ_i\delta_{x_i^n}}$ , ((Zi)i being asequence of i.i.d. real random variables. Our work extends thepreceding results of Gamboa and Gassiat (1997), in allowing to consider thinconstraints. Transportation-like ideas are used in the proof.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bobkov, S.G. and Gotze, F., Exponential integrability and transportation cost related to logarithmic sobolev inequalities. J. Funct. Anal. 163 (1999) 128. CrossRef
Borwein, J.M. and Lewis, A.S., Duality relationships for entropy-like minimization problems. SIAM J. Control Optim. 29 (1991) 325338. CrossRef
Borwein, J.M. and Lewis, A.S., Partially-finite programming in L 1 and the exitence of maximum entropy estimates. SIAM J. Optim. 3 (1993) 248267. CrossRef
P. Cattiaux and N. Gozlan, Deviations lower bounds and conditional principles. Prépublications de l'Université Paris 10, Nanterre (2002).
Csiszar, I., I-divergence geometry of probability distributions and minimization problems. Ann. Prob. 3 (1975) 146158. CrossRef
Csiszar, I., Sanov property, generalized I-projection and a conditional limit theorem. Ann. Prob. 12 (1984) 768793. CrossRef
Csiszar, I., Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 (1991) 20322066. CrossRef
Csiszar, I., Gamboa, F. and Gassiat, E., Mem pixel correlated solutions for generalized moment and interpolation problems. IEEE Trans. Inform. Theory 45 (1999) 22532270. CrossRef
Dacunha-Castelle, D. and Gamboa, F., Maximum d'entropie et problèmes des moments. Ann. Inst. Henri Poincaré 26 (1990) 567596.
A. Dembo and O. Zeitouni, Large deviations techniques and applications. Second edition. Springer-Verlag (1998).
J.D. Deuschel and D.W. Stroock, Large deviations. Academic Press (1989).
Ellis, R.S., Gough, J. and Pulé, J.V., The large deviation principle for measures with random weights. Rev. Math. Phys. 5 (1993) 659692. CrossRef
F. Gamboa, Méthode du maximum d'entropie sur la moyenne et applications. Thèse Orsay (1989).
Gamboa, F. and Gassiat, E., Maximum d'entropie et problèmes des moments: Cas multidimensionnel. Probab. Math. Statist. 12 (1991) 6783.
Gamboa, F. and Gassiat, E., Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997) 328350.
N. Gozlan, Principe conditionnel de Gibbs pour des contraintes fines approchées et inégalités de transport. Université Paris 10-Nanterre (2005).
J.B. Hirriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Springer-Verlag (2001).
Léonard, C., Minimizer of energy functionals. Acta Math. Hungar. 93 (2001) 281325. CrossRef
C. Léonard, A convex optimization problem arising from probabilistic questions. Prépublications de l'Université Paris 10-Nanterre (2004).
C. Léonard, Dominating points and entropic projections. Prépublications de l'Université Paris 10-Nanterre (2004).
P. Massart, Saint-Flour Lecture Notes (2003).
J. Najim, A Cramer type theorem for weighted random variables. Electronic J. Probab. 7 (2002).
R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag (1997).
D.W. Stroock and O. Zeitouni, Microcanonical distributions, Gibbs states and the equivalence of ensembles, R. Durret and H. Kesten Eds., Birkhäuser. Festschrift in honour of F. Spitzer (1991) 399–424.
A. Van Der Vaart and J. Wellner, Weak convergence and empirical processes. Springer Series in Statistics. Springer (1995).