Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T02:23:19.106Z Has data issue: false hasContentIssue false

Large deviations for directed percolationon a thin rectangle

Published online by Cambridge University Press:  05 January 2012

Jean-Paul Ibrahim*
Affiliation:
Universitéde Toulouse, Université Paul Sabatier, Institut de Mathématiques de Toulouse, 31062 Toulouse, France CNRS, Institut de Mathématiques de Toulouse UMR 5219, 31062 Toulouse, France. [email protected]
Get access

Abstract

Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Baik, J. and Suidan, T.M., A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. (2005) 325337. Google Scholar
Baryshnikov, Yu., GUEs and queues. Probab. Theory Relat. Fields 119 (2001) 256274. Google Scholar
Ben Arous, G., Dembo, A. and Guionnet, A., Aging of spherical spin glasses. Probab. Theory Relat. Fields 120 (2001) 167. Google Scholar
Ben Arous, G. and Guionnet, A., Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108 (1997) 517542. Google Scholar
Bodineau, T. and Martin, J., A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105112 (electronic). Google Scholar
L. Breiman, Probability, Classics in Applied Mathematics 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). Corrected reprint of the 1968 original.
Burkholder, D.L., Distribution function inequalities for martingales. Ann. Probability 1 (1973) 1942. Google Scholar
S. Chatterjee, A simple invariance theorem. Preprint arXiv:math.PR/0508213 (2005).
Csörgő, S. and Hall, P., The Komlós-Major-Tusnády approximations and their applications. Austral. J. Statist. 26 (1984) 189218. Google Scholar
Davis, B., On the L p norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976) 697704. Google Scholar
D. Féral, On large deviations for the spectral measure of discrete coulomb gas, in Séminaire de Probabilités, XLI. Lecture Notes in Math. 1934. Springer, Berlin (2008) 19–50.
Fuk, D.H., Certain probabilistic inequalities for martingales. Sibirsk. Mat. Ž. 14 (1973) 185193, 239. Google Scholar
Fuk, D.H. and Nagaev, S.V., Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen. 16 (1971) 660675. Google Scholar
Gravner, J., Tracy, C.A. and Widom, H., Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys. 102 (2001) 10851132. Google Scholar
Johansson, K., On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998) 151204. Google Scholar
Johansson, K., Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437476. Google Scholar
Komlós, J., Major, P. and Tusnády, G., An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 34 (1976) 3358. Google Scholar
König, W., Orthogonal polynomial ensembles in probability theory. Prob. Surveys 2 (2005) 385447 (electronic). Google Scholar
Ledoux, M., Deviation inequalities on largest eigenvalues, in Geometric aspects of functional analysis. Lecture Notes in Math. 1910 (2007) 167219. Google Scholar
M. Ledoux and B. Rider, Small deviations for beta ensembles. Preprint (2010).
M.L. Mehta, Random matrices, 2nd edition. Academic Press Inc., Boston, MA (1991).
Mikosch, T. and Nagaev, A.V., Large deviations of heavy-tailed sums with applications in insurance. Extremes 1 (1998) 81110. Google Scholar
O’Connell, N. and Yor, M., A representation for non-colliding random walks. Electron. Commun. Probab. 7 (2002) 112 (electronic). Google Scholar
D.l Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, 3rd edition,. Springer-Verlag, Berlin (1999).
E.B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer-Verlag, Berlin (1997). Appendix B by Thomas Bloom.
A.I. Sakhanenko, A new way to obtain estimates in the invariance principle, in High dimensional probability, II (Seattle, WA, 1999), Progr. Probab. 47. Birkhäuser Boston, Boston, MA (2000) 223–245.
Sawyer, S., A remark on the Skorohod representation. Z. Wahrscheinlichkeitstheor. und Verw. Geb. 23 (1972) 6774. Google Scholar
A.V. Skorokhod, Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass (1965).
Suidan, T., A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 (2006) 89778981. Google Scholar
Tracy, C.A. and Widom, H., Level-spacing distributions and the Airy kernel. Phys. Lett. B 305 (1993) 115118. Google Scholar