Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T15:28:10.810Z Has data issue: false hasContentIssue false

Density of paths of iterated Lévy transforms of Brownianmotion

Published online by Cambridge University Press:  31 August 2012

Marc Malric*
Affiliation:
15, avenue Gambetta, 94160 St-Mandé, France. [email protected]
Get access

Abstract

The Lévy transform of a Brownian motion B is the Brownian motionB(1) given by Bt(1) = 0tsgn(Bs)dBs; callB(n) the Brownian motion obtained fromB by iterating n times this transformation. Weestablish that almost surely, the sequence of paths (tBt(n))n⩾0isdense in Wiener space, for the topology of uniform convergence on compact timeintervals.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Dubins, L.E. and Smorodinsky, M., The modified, discrete Lévy transformation is Bernoulli, in Séminaire de Probabilités XXVI. Lect. Notes Math. 1526 (1992) CrossRefGoogle Scholar
Malric, M., Densité des zéros des transformées de Lévy itérées d’un mouvement brownien. C. R. Acad. Sci. Paris, Sér. I 336 (2003) 499504. Google Scholar
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3th edition. Springer-Verlag, Berlin (1999)