Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T21:13:15.311Z Has data issue: false hasContentIssue false

About the linear-quadratic regulator problem under a fractional Brownian perturbation

Published online by Cambridge University Press:  15 May 2003

M. L. Kleptsyna
Affiliation:
Institute of Information Transmission Problems, Bolshoi Karetnii Per. 19, Moscow 101475, Russia; [email protected].
Alain Le Breton
Affiliation:
Laboratoire de Modélisation et Calcul, Université J. Fourier, BP. 53, 38041 Grenoble Cedex 9, France; [email protected]. [email protected].
M. Viot
Affiliation:
Laboratoire de Modélisation et Calcul, Université J. Fourier, BP. 53, 38041 Grenoble Cedex 9, France; [email protected]. [email protected].
Get access

Abstract

In this paper we solve the basic fractionalanalogue of the classical linear-quadratic Gaussianregulator problem in continuous time. For a completelyobservable controlled linear system driven by a fractionalBrownian motion, we describe explicitely the optimal controlpolicy which minimizes a quadratic performance criterion.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall (1977).
Decreusefond, L. and Üstünel, A.S., Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. CrossRef
Duncan, T.E., Hu, Y. and Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000) 582-612. CrossRef
Gripenberg, G. and Norros, I., On the prediction of fractional Brownian motion. J. Appl. Probab. 33 (1997) 400-410. CrossRef
Y. Hu, B. Øksendal and A. Sulem, A stochastic maximum principle for processes driven by fractional Brownian motion, Preprint 24. Pure Math. Dep. Oslo University (2000).
M.L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Inference Stochastic Process. (to appear).
M.L. Kleptsyna and A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statist. Inference Stochastic Process. (to appear).
Kleptsyna, M.L., Le Breton, A. and Roubaud, M.-C., General approach to filtering with fractional Brownian noises - Application to linear systems. Stochastics and Stochastics Rep. 71 (2000) 119-140.
M.L. Kleptsyna, A. Le Breton and M. Viot, Solution of some linear-quadratic regulator problem under a fractional Brownian perturbation and complete observation, in Prob. Theory and Math. Stat., Proc. of the 8th Vilnius Conference, edited by B. Grigelionis et al., VSP/TEV (to appear).
R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes. Springer-Verlag (1978).
Norros, I., Valkeila, E. and Virtamo, J., An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999) 571-587. CrossRef
Nuzman, C.J. and Poor, H.V., Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Probab. 37 (2000) 429-452. CrossRef