Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T12:14:54.730Z Has data issue: false hasContentIssue false

Symmetric parareal algorithms for Hamiltoniansystems

Published online by Cambridge University Press:  04 March 2013

Xiaoying Dai
Affiliation:
LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. [email protected] UPMC Univ. Paris 06, UMR 7598, Laboratoire J.-L. Lions, Boîte courrier 187, 75252 Paris Cedex 05, France; [email protected]
Claude Le Bris
Affiliation:
École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France; [email protected]; [email protected] INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
Frédéric Legoll
Affiliation:
École Nationale des Ponts et Chaussées, 6 et 8 avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, France; [email protected]; [email protected] INRIA Rocquencourt, MICMAC team-project, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France
Yvon Maday
Affiliation:
UPMC Univ. Paris 06, UMR 7598, Laboratoire J.-L. Lions, Boîte courrier 187, 75252 Paris Cedex 05, France; [email protected] Division of Applied Mathematics, Brown University, Providence, RI, USA
Get access

Abstract

The parareal in time algorithm allows for efficient parallel numerical simulations oftime-dependent problems. It is based on a decomposition of the time interval intosubintervals, and on a predictor-corrector strategy, where the propagations over eachsubinterval for the corrector stage are concurrently performed on the different processorsthat are available. In this article, we are concerned with the long time integration ofHamiltonian systems. Geometric, structure-preserving integrators are preferably employedfor such systems because they show interesting numerical properties, in particularexcellent preservation of the total energy of the system. Using a symmetrization procedureand/or a (possibly also symmetric) projection step, we introduce here several variants ofthe original plain parareal in time algorithm [L. Baffico, et al. Phys. Rev. E66 (2002) 057701; G. Bal and Y. Maday, A parareal timediscretization for nonlinear PDE’s with application to the pricing of an American put, inRecent developments in domain decomposition methods, Lect.Notes Comput. Sci. Eng. 23 (2002) 189–202; J.-L. Lions, Y. Madayand G. Turinici, C. R. Acad. Sci. Paris, Série I 332 (2001)661–668.] that are better adapted to the Hamiltonian context. These variants arecompatible with the geometric structure of the exact dynamics, and are easy to implement.Numerical tests on several model systems illustrate the remarkable properties of theproposed parareal integrators over long integration times. Some formal elements ofunderstanding are also provided.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, H.C., Rattle: a velocity version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52 (1983) 2434. Google Scholar
Baffico, L., Bernard, S., Maday, Y., Turinici, G. and Zérah, G., Parallel in time molecular dynamics simulations. Phys. Rev. E 66 (2002) 057701. Google ScholarPubMed
G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 425–432.
G. Bal and Y. Maday, A parareal time discretization for nonlinear PDE’s with application to the pricing of an American put, in Recent developments in domain decomposition methods, edited by L.F. Pavarino and A. Toselli. Springer Verlag, Lect. Notes Comput. Sci. Eng. 23 (2002) 189–202.
G. Bal and Q. Wu, Symplectic parareal, in Domain decomposition methods in science and engineering, edited by U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund and W. Zulehner. Springer Verlag, Lect. Notes Comput. Sci. Eng. 60 (2008) 401–408.
Bellen, A. and Zennaro, M., Parallel algorithms for initial value problems for nonlinear vector difference and differential equations. J. Comput. Appl. Math. 25 (1989) 341350. Google Scholar
Benettin, G. and Giorgilli, A., On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74 (1994) 11171143. Google Scholar
Berry, L.A., Elwasif, W., Reynolds-Barredo, J.M., Samaddar, D., Sanchez, R. and Newman, D.E., Event-based parareal: A data-flow based implementation of parareal. J. Comput. Phys. 231 (2012) 59455954. Google Scholar
K. Burrage, Parallel and sequential methods for ordinary differential equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1995).
Burrage, K., Parallel methods for ODEs. Advances Comput. Math. 7 (1997) 13. Google Scholar
Chartier, P. and Philippe, B., A parallel shooting technique for solving dissipative ODE’s. Computing 51(3-4) (1993) 209236. Google Scholar
X. Dai, C. Le Bris, F. Legoll and Y. Maday, Symmetric parareal algorithms for Hamiltonian systems, arXiv:preprint 1011.6222.
Farhat, C., Cortial, J., Dastillung, C. and Bavestrello, H., Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Meth. Engng. 67 (2006) 697724. Google Scholar
P. Fischer, F. Hecht and Y. Maday, A parareal in time semi-implicit approximation of the Navier Stokes equations, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag Lect. Notes Comput. Sci. Eng. 40 (2005) 433–440.
D. Frenkel and B. Smit, Understanding molecular simulation, from algorithms to applications, 2nd ed., Academic Press (2002).
M. Gander and S. Vandewalle, On the superlinear and linear convergence of the parareal algorithm, in Proceedings of the 16th International Conference on Domain Decomposition Methods, January 2005, edited by O. Widlund and D. Keyes. Springer, Lect. Notes Comput. Sci. Eng. 55 (2006) 291–298.
Gander, M. and Vandewalle, S., Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2007) 556578. Google Scholar
Garrido, I., Lee, B., Fladmark, G.E. and Espedal, M.S., Convergent iterative schemes for time parallelization. Math. Comput. 75 (2006) 14031428. Google Scholar
W. Hackbusch, Parabolic multigrid methods, Computing methods in applied sciences and engineering VI (Versailles, 1983), North-Holland, Amsterdam (1984) 189–197.
Hairer, E., Symmetric projection methods for differential equations on manifolds. BIT 40 (2000) 726734. Google Scholar
Hairer, E. and Lubich, C., The life span of backward error analysis for numerical integrators. Numer. Math. 76 (1997) 441462. Google Scholar
Hairer, E., Lubich, C. and Wanner, G., Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer Ser. Comput. Math. 31 (2002). Google Scholar
P. Joly, Numerical methods for elastic wave propagation, in Waves in nonlinear pre-stressed materials, edited by M. Destrade and G. Saccomandi. Springer-Verlag (2007) 181–281.
P. Joly, The mathematical model for elastic wave propagation. Effective computational methods for wave propagation, in Numer. Insights, Chapman & Hall/CRC (2008) 247–266.
Laskar, J., A numerical experiment on the chaotic behavior of the Solar system. Nature 338 (1989) 237238. Google Scholar
Laskar, J., Chaotic diffusion in the Solar system. Icarus 196 (2008) 115. Google Scholar
B. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics. Cambridge University Press (2004).
Leimkuhler, B.J. and Skeel, R.D., Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112 (1994) 117125. Google Scholar
Lelarasmee, E., Ruehli, A.E. and Sangiovanni-Vincentelli, A.L., The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. CAD of IC Syst. 1 (1982) 131145. Google Scholar
Lions, J.-L., Maday, Y. and Turinici, G., A parareal in time discretization of PDE’s. C. R. Acad. Sci. Paris, Ser. I 332 (2001) 661668. Google Scholar
Y. Maday, The parareal in time algorithm, in Substructuring Techniques and Domain Decomposition Methods, edited by F. Magoulès. Chapt. 2, Saxe-Coburg Publications, Stirlingshire, UK (2010) 19–44. doi:10.4203/csets.24.2
Maday, Y. and Turinici, G., A parareal in time procedure for the control of partial differential equations. C. R. Acad. Sci. Paris Ser. I 335 (2002) 387392. Google Scholar
Maday, Y. and Turinici, G., A parallel in time approach for quantum control: the parareal algorithm. Int. J. Quant. Chem. 93 (2003) 223228. Google Scholar
Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 441–448.
A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1999).
Reich, S., Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36 (1999) 15491570. Google Scholar
Ryckaert, J.-P., Ciccotti, G. and Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23 (1977) 327341. Google Scholar
Saha, P., Stadel, J. and Tremaine, S., A parallel integration method for Solar system dynamics. Astron. J. 114 (1997) 409414. Google Scholar
Saha, P. and Tremaine, S., Symplectic integrators for solar system dynamics. Astron. J. 104 (1992) 16331640. Google Scholar
J.M. Sanz-Serna and M.P. Calvo, Numer. Hamiltonian Problems. Chapman & Hall (1994).
G.A. Staff and E.M. Rønquist, Stability of the parareal algorithm, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 449–456.
Toselli, A. and Widlund, O., Domain decomposition methods–algorithms and theory. Springer Ser. Comput. Math. 34 (2005). Google Scholar