Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:44:59.431Z Has data issue: false hasContentIssue false

Study of a low Mach nuclear core model for two-phase flows withphase transition I: stiffened gas law

Published online by Cambridge University Press:  24 September 2014

Manuel Bernard
Affiliation:
IFPEN – Lyon, BP 3, 69360 Solaize, France.. [email protected]
Stéphane Dellacherie
Affiliation:
DEN/DANS/DM2S/STMF, Commissariat à l’Énergie Atomique et aux Énergies Alternatives – Saclay, 91191 Gif-sur-Yvette, France. ; [email protected]
Gloria Faccanoni
Affiliation:
Université de Toulon – IMATH, EA 2134, avenue de l’Université, 83957 La Garde, France. ; [email protected]
Bérénice Grec
Affiliation:
MAP5 UMR CNRS 8145 – Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75270 Paris Cedex 6, France. ; [email protected]
Yohan Penel
Affiliation:
CEREMA-INRIA – team ANGE and LJLL UMR CNRS 7598, 4 place Jussieu, 75005 Paris, France.; [email protected]
Get access

Abstract

In this paper, we are interested in modelling the flow of the coolant (water) in anuclear reactor core. To this end, we use a monodimensional low Mach number modelsupplemented with the stiffened gas law. We take into account potential phase transitionsby a single equation of state which describes both pure and mixture phases. In someparticular cases, we give analytical steady and/or unsteady solutions which providequalitative information about the flow. In the second part of the paper, we introduce twovariants of a numerical scheme based on the method of characteristics to simulate thismodel. We study and verify numerically the properties of these schemes. We finally presentnumerical simulations of a loss of flow accident (LOFA) induced by a coolant pump tripevent.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Models. Technical report, U.S. Nuclear Regulatory Commission (2008).
Acrivos, A., Method of characteristics technique. Application to heat and mass transfer problems. Ind. Eng. Chem. 48 (1956) 703710. Google Scholar
Allaire, G., Faccanoni, G. and Kokh, S., A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I 344 (2007) 135140. Google Scholar
Almgren, A.S., Bell, J.B., Rendleman, C.A. and Zingale, M., Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922. Google Scholar
Almgren, A.S., Bell, J.B., Rendleman, C.A. and Zingale, M., Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927. Google Scholar
Bernard, M., Dellacherie, S., Faccanoni, G., Grec, B., Lafitte, O., Nguyen, T.-T. and Penel, Y.. Study of low Mach nuclear core model for single-phase flow. ESAIM Proc. 38 (2012) 118134. Google Scholar
Bestion, D.. The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229245. Google Scholar
H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. 2nd edition. John Wiley and sons (1985).
Casulli, V. and Greenspan, D., Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4 (1984) 10011012. Google Scholar
Clerc, S., Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows. J. Comput. Phys. 181 (2002) 577616. Google Scholar
Colella, P. and Pao, K., A projection method for low speed flows. J. Comput. Phys. 149 (1999) 245269. Google Scholar
J.M. Delhaye, Thermohydraulique des réacteurs. EDP sciences (2008).
Dellacherie, S., On a diphasic low Mach number system. ESAIM: M2AN 39 (2005) 487514. Google Scholar
Dellacherie, S., Numerical resolution of a potential diphasic low Mach number system. J. Comput. Phys. 223 (2007) 151187. Google Scholar
Dellacherie, S., Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 9781016. Google Scholar
Dellacherie, S., On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79106. Google Scholar
S. Dellacherie, G. Faccanoni, B. Grec, F. Lagoutière, E. Nayir and Y. Penel, 2D numerical simulation of a low Mach nuclear core model with stiffened gas using Freefem++. ESAIM. Proc. (accepted).
S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of low Mach nuclear core model for two-phase flows with phase transition II: tabulated EOS. In preparation.
Drouin, M., Grégoire, O. and Simonin, O., A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. Int. J. Heat Mass Transfer 63 (2013) 401413. Google Scholar
D.R. Durran, Numerical methods for fluid dynamics, With applications to Geophysics, vol. 32 of Texts in Applied Mathematics. Springer, 2nd edition. New York (2010).
Embid, P., Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differ. Equ. 12 (1987) 12271283. Google Scholar
G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (2008).
Faccanoni, G., Kokh, S. and Allaire, G., Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 10291054 2012. Google Scholar
Fillion, P., Chanoine, A., Dellacherie, S. and Kumbaro, A., FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des. 241 (2011) 43484358. Google Scholar
Goncalvès, E. and Patella, R.F., Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids 39 (2010) 99113. Google Scholar
Gonzalez-Santalo, J.M. and Lahey, R.T. Jr, An exact solution for flow transients in two-phase systems by the method of characteristics. J. Heat Transfer 95 (1973) 470476. Google Scholar
W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997).
Guillard, H. and Viozat, C., On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 6386. Google Scholar
S. Jaouen, Étude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).
M.F. Lai, J.B. Bell and P. Colella. A projection method for combustion in the zero Mach number limit, in Proc. of 11th AIAA Comput. Fluid Dyn. Conf. (1993) 776–783.
Le Métayer, O., Massoni, J. and Saurel, R., Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265276,. Google Scholar
Le Métayer, O., Massoni, J. and Saurel, R., Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567610. Google Scholar
E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg MD, 20899.
A. Majda and K.G. Lamb, Simplified equations for low Mach number combustion with strong heat release, Dynamical issues in combustion theory, vol. 35 of IMA Vol. Math. Appl. Springer-Verlag (1991).
Majda, A. and Sethian, J., The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42 (1985) 185205. Google Scholar
Menikoff, R. and Plohr, B.J., The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61 (1989) 75130. Google Scholar
Müller, S. and Voss, A., The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28 (2006) 651681. Google Scholar
Penel, Y., An explicit stable numerical scheme for the 1D transport equation. Discrete Contin. Dyn. Syst. Ser. S 5 (2012) 641656. Google Scholar
Penel, Y., Existence of global solutions to the 1D abstract bubble vibration model. Differ. Integral Equ. 26 (2013) 5980. Google Scholar
Saurel, R., Petitpas, F. and Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313350. Google Scholar
Sivashinsky, G.I., Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut. 6 (1979) 631645. Google Scholar
Volpe, G., Performance of compressible flow codes at low Mach numbers. AIAA J. 31 (1993) 4956. Google Scholar
A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state. Ph.D. thesis, RWTH Aachen (2005).
N. Zuber, Flow excursions and oscillations in boiling, two-phase flow systems with heat addition, in Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e (1967) 1071–1089.