Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T21:23:14.205Z Has data issue: false hasContentIssue false

Structural Evolution of the Taylor Vortices

Published online by Cambridge University Press:  15 April 2002

Tian Ma
Affiliation:
Department of Mathematics, Sichuan University, Chengdu, P.R. China.
Shouhong Wang
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405. email: [email protected]
Get access

Abstract

We classify in this article the structure and its transitions/evolution of the Taylor vortices with perturbations in one of the following categories: a) the Hamiltonian vector fields, b) the divergence-free vector fields, and c). the solutions of the Navier-Stokes equations on the two-dimensional torus.This is part of a project oriented toward to developing a geometric theory of incompressible fluid flows in the physical spaces.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley: Reading, MA (1978).
D.V. Anosov and V. Arnold, Dynamical Systems I, Springer-Verlag, New York, Heidelberg, Berlin (1985).
V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, Heidelberg, Berlin (1978).
Alain Bensoussan, Jacques-Louis Lions and Papanicolaou George, Asymptotic analysis for periodic structures, Ser. Studies in Mathematics and its Applications. 5; North-Holland Publishing Co., Amsterdam (1978) 700.
D. Chillingworth, Differential topology with a view to applications. Pitman, London, San Francisco, Melbourne. Research Notes in Mathematics, 9 (1976).
A. Chorin, Vorticity and Turbulence, Springer-Verlag (1994).
P. Constantin and C. Foias, The Navier-Stokes Equations, Univ. of Chicago Press, Chicago (1988).
Caffarelli, L. and Kohn, R. and Nirenberg, L., On the regularity of the solutions of Navier-Stokes Equations. Comm. Pure Appl. Math. 35 (1982) 771-831. CrossRef
Strebel, Kurt, Quadratic differentials, Springer-Verlag, Berlin (1984) 184.
A. Fathi, F. Laudenbach and V. Poénaru, Travaux de Thurston sur les surfaces. Asterisque 66-67 (1979).
Fannjiang, A. and Papanicolaou, G., Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333-408. CrossRef
Hopf, H., Abbildungsklassen n-dimensionaler mannigfaltigkeiten. Math. Annalen 96 (1926) 225-250. CrossRef
D. Gottlieb, Vector fields and classical theorems of topology. Rendiconti del Seminario Matematico e Fisico, Milano 60 (1990) 193-203.
J. Milnor, Topology from the differentiable viewpoint. University Press of Virginia, based on notes by D.W. Weaver, Charlottseville (1965).
J. Guckenheimer and P.J. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, New York, Heidelberg, Berlin (1983).
J.K. Hale, Ordinary differential equations, Robert E. Krieger Publishing Company, Malabar, Florida (1969).
M.W. Hirsch, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin (1976).
J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris (1969).
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1995).
J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que posent l'hydrodynamique. J. Math. Pures et Appl. XII (1933) 1-82.
Lions, J.L., Temam, R. and Wang, S., New formulations of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237-288. CrossRef
Lions, J.L., Temam, R. and Wang, S., On the Equations of Large-Scale Ocean. Nonlinearity 5 (1992) 1007-1053. CrossRef
Lions, J.L., Temam, R. and Wang, S., Models of the coupled atmosphere and ocean (CAO I). Computational Mechanics Advance , 1 (1993) 3-54.
J.L. Lions, R. Temam and S. Wang, Geostrophic Asymptotics of the Primitive Equations of the Atmosphere. Topological Methods in Nonlinear Analysis 4; note "Special issue dedicated to J. Leray" (1994) 253-287.
Lions, J.L., Temam, R. and Wang, S., Mathematical study of the coupled models of atmosphere and ocean (CAO III). J. Math. Pures Appl. 73 (1995) 105-163.
Lions, J.L., Temam, R. and Wang, S., Simple Global Model, A for the General Circulation of the Atmosphere, "Dedicated to Peter D. Lax and Louis Nirenberg on the occasion of their 70th birthdays''. Comm. Pure. Appl. Math. 50 (1997) 707-752. 3.0.CO;2-A>CrossRef
P.L. Lions, Mathematical Topics in Fluid Mechanics, Oxford science Publications (1996).
Majda, A., Vorticity and the mathematical theory of incompressible fluid flow. Frontiers of the mathematical sciences: 1985 (New York). Comm. Pure Appl. Math. 39 (1986) S187-S220. CrossRef
Ma, T. and Wang, S., Dynamics of Incompressible Vector Fields. Appl. Math. Lett. 12 (1999) 39-42. CrossRef
T. Ma and S. Wang, Dynamics of 2-D Incompressible Flows. Proceedings of the International Conferences on Differential Equations and Computation (1999).
T. Ma and S. Wang, The Geometry of the Stream Lines of Steady States of the Navier-Stokes Equations. Contemporary Mathematics, AMS 238 (1999) 193-202.
T. Ma and S. Wang, Block structure and stability of 2-D Incompressible Flows (in preparation, 1999).
T. Ma and S. Wang, Structural classification and stability of divergence-free vector fields. Nonlinearity (revised, 1999).
A. Majda, The interaction of nonlinear analysis and modern applied mathematics. Proc. Internat. Congress Math., Kyoto, 1990, Springer-Verlag, New York, Heidelberg, Berlin (1991) Vol. 1.
N. Markley, The Poincaré-Bendixson theorem for Klein bottle. Trans. AMS 135 (1969).
L. Markus and R. Meyer, Generic Hamiltonian systems are neither integrable nor ergodic. Memoirs of the American Mathematical Society 144 (1974).
J. Moser, Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77. Princeton (1973).
J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York, Heidelberg, Berlin (1982).
J. Palis and S. Smale, Structural stability theorem. Global Analysis. Proc. Symp. in Pure Math. XIV (1970).
Peixoto, M., Structural stability on two dimensional manifolds. Topology 1 (1962) 101-120. CrossRef
Pugh, C., The closing lemma. Amer. J. Math. 89 (1967) 956-1009. CrossRef
Shub, Michael, Stabilité globale des systèmes dynamiques. Société Mathématique de France. Note With an English preface and summary. Astérisque 56 (1978) iv+211.
C. Robinson, Generic properties of conservative systems, I, II. Amer. J. Math. 92 (1970) 562-603 and 897-906.
Robinson, C., Structure stability of vector fields. Ann. of Math. 99 (1974) 154-175. CrossRef
Robinson, C., Structure stability of C1 diffeomorphisms. J. Differential Equations 22 (1976) 28-73. CrossRef
G. Schwartz, Hodge decomposition-A method for solving boundary value problems. Lecture Notes in Mathematics 1607 Springer-Verlag (1995).
Smale, S., Differential dynamical systems. Bull. AMS 73 (1967) 747-817. CrossRef
Takens, F., Hamiltonian systems: generic properties of closed orbits and local perturbations. Math. Ann. 188 (1970) 304-312. CrossRef
Taylor, G.I., Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc. A 223 (1923) 289-343. CrossRef
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edition, North Holland, Amsterdam (1984).
R. Thom, Structural Stability and Morphogenesis, Benjamin-Addison Wesley (1975).
Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19 (1988) 417-431. CrossRef
V. Trofimov, Introduction to Geometry on Manifolds with Symmetry, MIA Kluwer Academic Publishers (1994).
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, Heidelberg, Berlin (1990).
J.C. Yoccoz, Recent developments in dynamics, in Proc. Internat. Congress Math., Zurich (1994), Birkhauser Verlag, Basel, Boston, Berlin (1994) 246-265 Vol. 1.