Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T21:50:03.317Z Has data issue: false hasContentIssue false

Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift

Published online by Cambridge University Press:  18 December 2008

David J. Knezevic
Affiliation:
OUCL, University of Oxford, Parks Road, Oxford, OX1 3QD, UK. [email protected]; [email protected]; [email protected]
Endre Süli
Affiliation:
OUCL, University of Oxford, Parks Road, Oxford, OX1 3QD, UK. [email protected]; [email protected]; [email protected]
Get access

Abstract

This paper is concerned with the analysis and implementation of spectral Galerkinmethods for a class of Fokker-Planck equations that arisesfrom the kinetic theory of dilute polymers. A relevant feature of the class of equationsunder consideration from the viewpoint of mathematical analysis and numerical approximation isthe presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ alongthe boundary ∂D of the computational domain D.Using a symmetrization of the differential operator based on the Maxwellian M corresponding to U,which vanishes along ∂D, we remove the unbounded drift coefficient at the expenseof introducing a degeneracy, through M, in the principal part of the operator.The general class of admissible potentials consideredincludes the FENE (finitely extendible nonlinear elastic) model.We show the existence of weak solutions to the initial-boundary-value problem, and develop a fully-discretespectral Galerkin method for such degenerate Fokker-Planck equationsthat exhibits optimal-order convergence in the Maxwellian-weighted H1 norm on D.In the case of the FENE model, we also discuss variants of these analytical results when the Fokker-Planck equation is subjected to an alternative class of transformations proposed by Chauvière and Lozinski; these map the original Fokker-Planck operator with an unbounded drift coefficient into Fokker-Planck operators with unbounded drift and reaction coefficients, that have improved coercivity properties in comparison with theoriginal operator. The analytical results are illustrated by numerical experiments for the FENE model in two space dimensions.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammar, A., Mokdad, B., Chinesta, F. and Keunings, R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139 (2006) 153176. CrossRef
Ammar, A., Mokdad, B., Chinesta, F. and Keunings, R., A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144 (2007) 98121. CrossRef
Avkhadiev, F.G. and Wirths, K.-J., Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87 (2007) 632642. CrossRef
Barrett, J.W. and Süli, E., Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506546. CrossRef
Barrett, J.W. and Süli, E., Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Mod. Meth. Appl. Sci. 18 (2008) 935971. CrossRef
J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. (2008) online. Available at http://imajna.oxfordjournals.org/cgi/content/abstract/drn022.
Barrett, J.W., Schwab, C. and Süli, E., Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939983. CrossRef
Bernardi, C., Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 12121240. CrossRef
C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis V, P. Ciarlet and J. Lions Eds., Elsevier (1997).
Besov, O.V. and Kufner, A., The density of smooth functions in weight spaces. Czechoslova. Math. J. 18 (1968) 178188.
Besov, O.V., Kadlec, J. and Kufner, A., Certain properties of weight classes. Dokl. Akad. Nauk SSSR 171 (1966) 514516.
R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics. Second edition, John Wiley and Sons (1987).
R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. Second edition, John Wiley and Sons (1987).
Bobkov, S. and Ledoux, M., From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 10281052. CrossRef
C. Canuto, A. Quarteroni, M.Y. Hussaini and T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer (2006).
S. Cerrai, Second Order PDE's in Finite and Infinite Dimensions, A Probabilistic Approach, Lecture Notes in Mathematics 1762. Springer (2001).
Chauvière, C. and Lozinski, A., Simulation of complex viscoelastic flows using Fokker-Planck equation: 3D FENE model. J. Non-Newtonian Fluid Mech. 122 (2004) 201214. CrossRef
Chauvière, C. and Lozinski, A., Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids 33 (2004) 687696. CrossRef
Da Prato, G. and Lunardi, A., On a class of elliptic operators with unbounded coefficients in convex domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004) 315326.
Du, Q., Liu, C. and FENE du, P. Yumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709731. CrossRef
Eisen, H., Heinrichs, W. and Witsch, K., Spectral collocation methods and polar coordinate singularities. J. Comput. Phys. 96 (1991) 241257. CrossRef
M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities. Springer (1973).
Jourdain, B., Lelièvre, T. and Le Bris, C., Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple case. Math. Mod. Meth. Appl. Sci. 12 (2002) 12051243. CrossRef
A.N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931).
A. Kufner, Weighted Sobolev Spaces, Teubner-Texte zur Mathematik. Teubner (1980).
Li, T. and Zhang, P.-W., Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 151. CrossRef
Lozinski, A. and Chauvière, C., A fast solver for Fokker-Planck equation applied to viscoelastic flows calculation: 2D FENE model. J. Comput. Phys. 189 (2003) 607625. CrossRef
Marcus, M., Mizel, V.J. and Pinchover, Y., On the best constant for Hardy's inequality in R n . Trans. Amer. Math. Soc. 350 (1998) 32373255. CrossRef
Matsushima, T. and Marcus, P.S., A spectral method for polar coordinates. J. Comput. Phys. 120 (1995) 365374. CrossRef
H.C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer (1996).
Shen, J., Efficient spectral Galerkin methods III: Polar and cylindrical geometries. SIAM J. Sci. Comput. 18 (1997) 15831604. CrossRef
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Third edition, North-Holland, Amsterdam (1984).
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Second edition, Johan Ambrosius Barth, Heidelberg (1995).
Verkley, W.T.M., A spectral model for two-dimensional incompressible fluid flow in a circular basin I. Mathematical formulation. J. Comput. Phys. 136 (1997) 100114. CrossRef