Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T10:58:42.010Z Has data issue: false hasContentIssue false

A priori error estimates for reduced ordermodels in finance

Published online by Cambridge University Press:  11 January 2013

Ekkehard W. Sachs
Affiliation:
Universität Trier, Fachbereich IV, Abteilung Mathematik, 54286 Trier, Germany.. [email protected]; [email protected]
Matthias Schu
Affiliation:
Universität Trier, Fachbereich IV, Abteilung Mathematik, 54286 Trier, Germany.. [email protected]; [email protected]
Get access

Abstract

Mathematical models for option pricing often result in partial differential equations.Recent enhancements are models driven by Lévy processes, which lead to a partialdifferential equation with an additional integral term. In the context of modelcalibration, these partial integro differential equations need to be solved quitefrequently. To reduce the computational cost the implementation of a reduced order modelhas shown to be very successful numerically. In this paper we give a priorierror estimates for the use of the proper orthogonal decomposition technique inthe context of option pricing models.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Y. Achdou and O. Pironneau, Computational Methods for Option Pricing. SIAM (2005).
Almendral, A. and Oosterlee, C., Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53 (2005) 118. Google Scholar
Andersen, L. and Andreasen, J., Jump-diffusion processes : Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (2000) 231262. Google Scholar
Antil, H., Heinkenschloss, M. and Hoppe, R., Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Soft. 26 (2011) 643669. Google Scholar
Antil, H., Heinkenschloss, M., Hoppe, R. and Sorensen, D., Domain decomposition and model reduction for the numerical solution of pde constrained optimization problems with localized optimization variables. Comput. Vis. Sci. 13 (2010) 249264. Google Scholar
Armstrong, N.J., Painter, K.J. and Sherratt, J.A., A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243 (2006) 98113. Google ScholarPubMed
Black, F. and Scholes, M., The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637654. Google Scholar
Cont, R., Lantos, N. and Pironneau, O., A reduced basis for option pricing. SIAM J. Financ. Math. 2 (2011) 287316. Google Scholar
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall (2004).
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, in Evolution Problems I 5, Springer (1992).
Dupire, B., Pricing with a smile. Risk 7 (1994) 1820. Google Scholar
Gerisch, A., On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. J. Numer. Anal. 30 (2010) 173194. Google Scholar
Gerisch, A. and Chaplain, M., Mathematical modelling of cancer cell invasion of tissue : Local and non-local models and the effect of adhesion. J. Theoret. Biol. 250 (2008) 684704. Google ScholarPubMed
Grepl, M.A. and Patera, A.T., A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157181. Google Scholar
Hepperger, P., Option pricing in Hilbert space-valued jump-diffusion models using partial integro-differential equations. SIAM J. Financ. Math. 1 (2008) 454489. Google Scholar
Hinze, M. and Volkwein, S., Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319345. Google Scholar
P. Holmes, J. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press (1996).
J.C. Hull, Options, Futures and Other Derivatives, Prentice-Hall, Upper Saddle River, N.J., 6th edition (2006).
Kou, S.G., A jump-diffusion model for option pricing. Manage. Sci. 48 (2002) 10861101. Google Scholar
Kunisch, K. and Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117148. Google Scholar
Matache, A.-M., von Petersdorff, T. and Schwab, C., Fast deterministic pricing of options on Lévy driven assets. ESAIM : M2AN 38 (2004) 3772. Google Scholar
Merton, R.C., Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3 (1976) 125144. Google Scholar
Pironneau, O., Calibration of options on a reduced basis. J. Comput. Appl. Math. 232 (2009) 139147. Google Scholar
E.W. Sachs and M. Schu, Reduced order models (POD) for calibration problems in finance, edited by K. Kunisch, G. Of and O. Steinbach. ENUMATH 2007, Numer. Math. Adv. Appl. (2008) 735–742.
Sachs, E.W. and Schu, M., Reduced order models in PIDE constrained optimization. Control and Cybernetics 39 (2010) 661675. Google Scholar
Sachs, E.W. and Strauss, A., Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 58 (2008) 16871703. Google Scholar
Sachs, E.W. and Volkwein, S., POD-Galerkin approximations in PDE-constrained optimization. GAMM Reports 33 (2010) 194208. Google Scholar
W. Schoutens, Lévy-Processes in Finance, Wiley (2003).
Volkwein, S., Optimal control of a phase-field model using proper orthogonal decomposition. Z. Angew. Math. Mech. 81 (2001) 8397. Google Scholar
S. Volkwein, Model reduction using proper orthogonal decomposition. Lecture Notes, University of Constance (2011).