Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T21:32:51.617Z Has data issue: false hasContentIssue false

Optimal control of the bidomain system (III): Existence ofminimizers and first-order optimality conditions

Published online by Cambridge University Press:  13 June 2013

Karl Kunisch
Affiliation:
University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstraße 36, 8010 Graz, Austria.. [email protected]
Marcus Wagner
Affiliation:
University of Leipzig, Department of Mathematics, P. O. B. 10 09 20, 04009 Leipzig, Germany.; www.thecitytocome.de/[email protected]
Get access

Abstract

We consider optimal control problems for the bidomain equations of cardiacelectrophysiology together with two-variable ionic models, e.g. theRogers–McCulloch model. After ensuring the existence of global minimizers, we provide arigorous proof for the system of first-order necessary optimality conditions. The proof isbased on a stability estimate for the primal equations and an existence theorem for weaksolutions of the adjoint system.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainseba, B., Bendahmane, M. and Ruiz-Baier, R., Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231247. Google Scholar
Aliev, R.R. and Panfilov, A.V., A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293301. Google Scholar
M.S. Berger, Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977).
Bourgault, Y., Coudière, Y. and Pierre, C., Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458482. Google Scholar
A.J.V. Brandaõ, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh–Nagumo equation. Electron. J. Differ. Eq. (2008) 1–20.
B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, New York (2008).
L.C. Evans, Partial Differential Equations. Amer. Math. Soc. Providence (1998).
FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445466. Google ScholarPubMed
K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008).
Kunisch, K., Nagaiah, C. and Wagner, M., A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257269. Google Scholar
Kunisch, K. and Wagner, M., Optimal control of the bidomain system (I): The monodomain approximation with the Rogers–McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 15251550. Google Scholar
K. Kunisch and M. Wagner, Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–008 (to appear: Ann. Mat. Pura Appl.)
S. Muzdeka and E. Barbieri, Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416–7421.
Nagaiah, C. and Kunisch, K., Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 5365. Google Scholar
Nagaiah, C., Kunisch, K. and Plank, G., Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149178. Google Scholar
C. Nagaiah, K. Kunisch and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011–020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2)
Nagumo, J., Arimoto, S. and Yoshizawa, S., An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 20612070. Google Scholar
Rogers, J.M. and McCulloch, A.D., A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743757. Google ScholarPubMed
S. Rolewicz, Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976).
J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A.Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Berlin (2006).
L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978).
Veneroni, M., Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849868. Google Scholar
J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972).
K. Yosida, Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980).