Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:20:51.462Z Has data issue: false hasContentIssue false

On a 2D vector Poisson problem with apparently mutually exclusive scalar boundary conditions

Published online by Cambridge University Press:  15 April 2002

Jean-Luc Guermond
Affiliation:
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, CNRS, BP 133, 91403 Orsay, France. ([email protected])
Luigi Quartapelle
Affiliation:
Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.
Jiang Zhu
Affiliation:
Laboratório Nacional de Computação Científica, MCT, Avenida Getúlio Vargas 333, Petrópolis, 25651-070 RJ, Brazil. ([email protected])
Get access

Abstract

This work is devoted to the study of a two-dimensional vectorPoisson equation with the normal component of the unknown andthe value of the divergence of the unknown prescribed simultaneouslyon the entire boundary.These two scalar boundary conditions appear prima faciealternative in a standard variational framework. An originalvariational formulation of this boundary value problemis proposed here. Furthermore, an uncoupled solution algorithm isintroduced together with its finite element approximation.The numerical scheme has been implemented and appliedto solve a simple test problem.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achdou, Y., Glowinski, R. and Pironneau, O., Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations. Numer. Math. 63 (1992) 145-163. CrossRef
Babuska, I., The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. CrossRef
C. Bernardi, Méthodes d'éléments finis mixtes pour les équations de Navier-Stokes. Thèse de 3e Cycle, Université de Paris VI, France (1979).
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
El Dabaghi, F. and Pironneau, O., Stream vectors in three dimensional aerodynamics. Numer. Math. 48 (1986) 561-589. CrossRef
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986).
Glowinski, R. and Pironneau, O., Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 21 (1979) 167-212. CrossRef
P. Neittaanmaki and M. Krizek, in Efficient Solution of Elliptic Systems, Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domain. Notes in Numerical Fluid Mechanics, Vol. 10, W. Hachbush Ed., Vieweg Publishing, Wiesbaden, Germany (1984); see also Appl. Math. 29 (1984) 272-285.
L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser, Basel (1993).
L. Quartapelle and A. Muzzio, Decoupled solution of vector Poisson equations with boundary condition coupling, in Computional Fluid Dynamics, G. de Vahl Davis and C. Fletcher Eds., Elsevier Science Publishers B.V., North-Holland (1988) 609-619.
Quartapelle, L., Ruas, V. and Zhu, J., Uncoupled solution of the three-dimensional vorticity-velocity equations. ZAMP 49 (1998) 384-400. CrossRef
Ruas, V., Quartapelle, L. and Zhu, J., A symmetrized velocity-vorticity formulation of the three-dimensional Stokes system. C.R. Acad. Sci. Paris Sér. IIb 323 (1996) 819-824.
G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New York (1973).
J. Zhu, A.F.D. Loula and L. Quartapelle, A vector Poisson problem with coupling boundary conditions in a Lipschitz 2D domain, Research Report, Laboratório Nacional de Computaç ao Científica, CNPq, N0 30 (1997).
J. Zhu, A. F. D. Loula and L. Quartapelle, Finite element solution of vector Poisson equation with a coupling boundary condition. Numer. Methods Partial Differential Eq. 16 (2000).
Zhu, J., Quartapelle, L. and Loula, A.F.D., Uncoupled variational formulation of a vector Poisson problem. C.R. Acad. Sci. Paris Sér. I 323 (1996) 971-976.