Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T20:44:17.382Z Has data issue: false hasContentIssue false

Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell andVlasov-Maxwell systems

Published online by Cambridge University Press:  15 April 2002

Mihai Bostan*
Affiliation:
INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis, France. ([email protected])
Get access

Abstract

The topic of this paper is the numerical analysis of timeperiodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM)which forms the basis of our study is presented. Theoreticalresults have been proved in the linear finite dimensional case. Thismethod is applied to scattering problems and transport of chargedparticles.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arsenev, A., Global existence of a weak solution of Vlasov's system of equations. USSR Comp. Math. Math. Phys. 15 (1975) 131-143.
Asano, K. and Ukai, S., On the Vlasov-Poisson limit of the Vlasov-Maxwell equation. Pattern and waves. Qualitative analysis of nonlinear differential equations. Stud. Math. Appl. 18 (1986) 369-383.
Ben, N..Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system,. Math. Meth. Appl. Sci. 17 (1994) 451-476.
M. Bezard, Boundary value problems for the Vlasov-Maxwell system, in Semin. Équ. Deriv. Partielles, Ec. Polytech., Cent. Math., Palaiseau Semi 1992-1993, Exp. No. 4 (1993) 17.
B. Bodin, Modélisation et simulation numérique du régime de Child-Langmuir. Thèse de l'École Polytechnique, Palaiseau (1995).
M. Bostan and F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions. C. R. Acad. Sci. Paris, Sér. I 325 (1997) 1333-1336.
Bostan, M. and Poupaud, F., Periodic solutions of the Vlasov-Poisson system with boundary conditions. Math. Mod. Meth. Appl. Sci. 10 (1998) 651-672. CrossRef
Bostan, M. and Poupaud, F., Periodic solutions of the 1D Vlasov-Maxwell system with boundary conditions. Math. Meth. Appl. Sci. 23 (2000) 1195-1221. 3.0.CO;2-R>CrossRef
M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time periodic solutions; application to scattering. J. Comp. Phys. 147 (1998) 265-292.
J.P. Cioni, Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis. Ph.D., Université de Nice Sophia-Antipolis (1995).
J.P. Cioni, L. Fezoui and D. Issautier, High-order upwind schemes for solving time-domain Maxwell equation. La Recherche Aérospatiale No. 5 (1994) 319-328.
P. Degond, Regularité de la solution des équations cinétiques en physiques de plasmas, in Semin. Équ. Dériv. Partielles 1985-1986, Exp. No. 18 (1986) 11.
Degond, P., Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods Appl. Sci. 8 (1986) 533-558. CrossRef
Degond, P., Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. Ec. Norm. Super. IV. Ser. 19 (1986) 519-542.
R.J. Diperna and P.L. Lions, Global weak solutions of Vlasov-Maxwell system. Comm. Pure Appl. Math. XVII (1989) 729-757.
C. Greengard and P.A. Raviart, A boundary value problem for the stationary Vlasov-Poisson system. Comm. Pure Appl. Math. XLIII (1990) 473-507.
Guo, Y., Global weak solutions of the Vlasov-Maxwell system with boundary conditions. Comm. Math. Phys. 154 (1993) 245-263. CrossRef
Guo, Y., Regularity for the Vlasov equation in a half space. Indiana Univ. Math. J. 43 (1994) 255-320. CrossRef
Lions, P.L. and Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991) 415-430. CrossRef
R. Löhner and J. Ambrosiano, A finite element solver for the Maxwell equations, in GAMNI-SMAI conference on numerical methods for the solution of Maxwell equations, Paris (1989).
Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in 3 dimensions for general initial data. J. Diff. Eq. 95 (1992) 281-303. CrossRef
Poupaud, F., Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499-527.