Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Gyrya, Vitaliy
and
Lipnikov, Konstantin
2008.
High-order mimetic finite difference method for diffusion problems on polygonal meshes.
Journal of Computational Physics,
Vol. 227,
Issue. 20,
p.
8841.
Beirão da Veiga, L.
Lipnikov, K.
and
Manzini, G.
2009.
Convergence analysis of the high-order mimetic finite difference method.
Numerische Mathematik,
Vol. 113,
Issue. 3,
p.
325.
Beirão da Veiga, L.
Gyrya, V.
Lipnikov, K.
and
Manzini, G.
2009.
Mimetic finite difference method for the Stokes problem on polygonal meshes.
Journal of Computational Physics,
Vol. 228,
Issue. 19,
p.
7215.
Brezzi, Franco
and
Buffa, Annalisa
2010.
Innovative mimetic discretizations for electromagnetic problems.
Journal of Computational and Applied Mathematics,
Vol. 234,
Issue. 6,
p.
1980.
Lipnikov, Konstantin
and
Shashkov, Mikhail
2010.
A mimetic tensor artificial viscosity method for arbitrary polyhedral meshes.
Procedia Computer Science,
Vol. 1,
Issue. 1,
p.
1921.
da Veiga, L. Beirão
Lipnikov, K.
and
Manzini, G.
2010.
Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes.
SIAM Journal on Numerical Analysis,
Vol. 48,
Issue. 4,
p.
1419.
da Veiga, L. Beirão
and
Lipnikov, K.
2010.
A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles.
SIAM Journal on Scientific Computing,
Vol. 32,
Issue. 2,
p.
875.
Lipnikov, K.
and
Shashkov, M.
2010.
A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes.
Journal of Computational Physics,
Vol. 229,
Issue. 20,
p.
7911.
da Veiga, L. Beirão
Lipnikov, K.
and
Manzini, G.
2011.
Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes.
SIAM Journal on Numerical Analysis,
Vol. 49,
Issue. 5,
p.
1737.
Beirão da Veiga, L.
and
Mora, D.
2011.
A mimetic discretization of the Reissner–Mindlin plate bending problem.
Numerische Mathematik,
Vol. 117,
Issue. 3,
p.
425.
Specogna, Ruben
2011.
Complementary geometric formulations for electrostatics.
International Journal for Numerical Methods in Engineering,
Vol. 86,
Issue. 8,
p.
1041.
Coudière, Yves
and
Hubert, Florence
2011.
A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations.
SIAM Journal on Scientific Computing,
Vol. 33,
Issue. 4,
p.
1739.
Heumann, Holger
and
Hiptmair, Ralf
2011.
Eulerian and
semi-Lagrangian methods for convection-diffusion for differential forms.
Discrete & Continuous Dynamical Systems - A,
Vol. 29,
Issue. 4,
p.
1471.
Cangiani, Andrea
Gardini, Francesca
and
Manzini, Gianmarco
2011.
Convergence of the mimetic finite difference method for eigenvalue problems in mixed form.
Computer Methods in Applied Mechanics and Engineering,
Vol. 200,
Issue. 9-12,
p.
1150.
Lipnikov, K.
Manzini, G.
Brezzi, F.
and
Buffa, A.
2011.
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes.
Journal of Computational Physics,
Vol. 230,
Issue. 2,
p.
305.
Veiga, Lourenço Beirão
Lipnikov, Konstantin
and
Manzini, Gianmarco
2011.
Finite Volumes for Complex Applications VI Problems & Perspectives.
Vol. 4,
Issue. ,
p.
69.
GYRYA, VITALIY
and
LIPNIKOV, KONSTANTIN
2012.
M-ADAPTATION METHOD FOR ACOUSTIC WAVE EQUATION ON SQUARE MESHES.
Journal of Computational Acoustics,
Vol. 20,
Issue. 04,
p.
1250022.
Eymard, Robert
Guichard, Cindy
and
Herbin, Raphaèle
2012.
Small-stencil 3D schemes for diffusive flows in porous media.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 46,
Issue. 2,
p.
265.
Jiang, Lijian
David Moulton, J.
and
Svyatskiy, Daniil
2012.
Analysis of stochastic mimetic finite difference methods and their applications in single-phase stochastic flows.
Computer Methods in Applied Mechanics and Engineering,
Vol. 217-220,
Issue. ,
p.
58.
Gyrya, V.
and
Lipnikov, K.
2013.
Numerical Mathematics and Advanced Applications 2011.
p.
429.