Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T15:43:51.668Z Has data issue: false hasContentIssue false

Medical image – based computational model of pulsatile flowin saccular aneurisms

Published online by Cambridge University Press:  15 November 2003

Stéphanie Salmon
Affiliation:
UFR de Mathématique et d'Informatique, Université L. Pasteur, 67084 Strasbourg, France.
Marc Thiriet
Affiliation:
Projet INRIA “BANG” and Laboratoire Jacques-Louis Lions, CNRS UMR 7598, UPMC, 75252 Paris, France.
Jean-Frédéric Gerbeau
Affiliation:
INRIA, Projet BANG, BP 105, 78153 Le Chesnay, France. [email protected].
Get access

Abstract

Saccular aneurisms, swelling of a blood vessel,are investigated in order (i) to estimate the development risk ofthe wall lesion, before and after intravascular treatment,assuming that the pressure is the major factor,and (ii) to better plan medical interventions.Numerical simulations, using the finite element method,are performed in three-dimensional aneurisms.Computational meshes are derived from medical imaging datato take into account both between-subject and within-subjectanatomical variability of the diseased vessel segment.The 3D reconstruction is associated with a faceted surface.A geometrical model is then obtained to be finally meshed for a finite element use. The pulsatile flow of incompressible Newtonian blood is illustrated by numerical simulations carried out in two saccular aneurism types, a side- and a terminal-aneurism.High pressure zones are observed in the aneurism cavity,especially in the terminal one.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, D.N., Brezzi, F. and Fortin, M., A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. CrossRef
J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry. Cambridge University Press, UK (1998).
J.-D. Boissonat, R. Chaine, P. Frey, J.F. Gerbeau, G. Malandain, F. Nicoud, S. Salmon, E. Saltel and M. Thiriet, From medical images to computational blood flow models. INRIA Research Report (2003).
Butty, V.D., Gudjonsson, K., Buchel, P., Makhijani, V.B., Ventikos, Y. and Polikakos, D., Residence time and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 39 (2002) 387-393.
Chien, S., Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168 (1970) 977-978. CrossRef
S. Chien, Biophysical behavior in suspensions, in The Red Blod Cell, D. Surgenor Ed., Academic Press, New York (1975).
P.G. Ciarlet, The finite element method for elliptic problems. Stud. Math. Appl. 4 (1978).
Ferguson, G.G., Physical factors in the initiation, growth and rupture of human intracranial saccular aneurysms. J. Neurosurg. 37 (1972) 666-677. CrossRef
P. Frey, A fully automatic adaptive isotropic surface remeshing procedure. INRIA Research Report 0252 (2001).
J.-F. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows. INRIA Research Report 4691 (2001).
P.L. George, F. Hecht and E. Saltel, TetMesh (distributed by SIMULOG).
R. Glowinski, Numerical methods for nonlinear variational problems. Springer Ser. Comput. Phys. (1984).
F. Hecht and C. Parès, NSP1B3 : un logiciel pour résoudre les équations de Navier Stokes incompressible 3D. INRIA Research Report 1449 (1991).
Liou, T.M. and Liou, S.N., A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. ROC(B) 4 (1999) 133-148.
Lorensen, W.E. and Cline, H.E., Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graphics 21 (1987) 163-169. CrossRef
J.-B. Mossa, Simulation d'une bifurcation artérielle. CERFACS Report (2001).
Perktold, K., Peter, R. and Resch, M., Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26 (1989) 1011-1030.
Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numerische Mathematik 38 (1982) 309-332. CrossRef
Steiger, H.J., Liepsch, D.W., Poll, A. and Reulen, H.J., Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study. Heart Vessels 4 (1988) 162-169. CrossRef
D.A. Steinman, J.S. Milner, C.J. Norley, S.P. Lownie and D.W. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24 (2003) 559-566
G. Taubin, Curve and surface smoothing without shrinkage, in 5th Int. Conf. on Computer Vision Proc. (1995) 852-857.
Thiriet, M., Martin-Borret, G. and Hecht, F., Ecoulement rhéofluidifiant dans un coude et une bifurcation plane symétrique. Application à l'écoulement sanguin dans la grande circulation. J. Phys. III France 6 (1996) 529-542. CrossRef
Thiriet, M. et al., Apports et limitations de la vélocimétrie par résonance magnétique nucléaire en biomécanique. Mesures dans un embranchement plan symétrique. J. Phys. III France 7 (1997) 771-787. CrossRef
Thiriet, M., Brugières, P., Bittoun, J. and Gaston, A., Computational flow models in cerebral congenital aneurisms: I. Steady flow. Méca. Ind. 2 (2001) 107-118. CrossRef
M. Thiriet, S. Naili and C. Ribreau, Entry length and wall shear stress in uniformly collapsed-pipe flow. Comput. Model. Engrg. Sci. 4 (2003) No. 3 and 4.