Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T09:30:48.238Z Has data issue: false hasContentIssue false

Local Solutions for Stochastic Navier Stokes Equations

Published online by Cambridge University Press:  15 April 2002

Alain Bensoussan
Affiliation:
University Paris Dauphine and CNES, 2 Place Maurice Quantor, 75001 Paris, France.
Jens Frehse
Affiliation:
Institüt für Angewandte Mathematik, Universität Bonn, 6 BeringStrasse, Bonn, Germany.
Get access

Abstract

In this article we consider local solutions for stochastic Navier Stokesequations, based on the approach of Von Wahl, for the deterministic case. Wepresent several approaches of the concept, depending on the smoothnessavailable. When smoothness is available, we can in someway reduce thestochastic equation to a deterministic one with a random parameter. In thegeneral case, we mimic the concept of local solution for stochasticdifferential equations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bensoussan, A., Stochastic Navier Stokes Equations. Acta Appl. Math. 38 (1995) 267-304. CrossRef
Bensoussan, A. and Temam, R., Equations stochastiques du type Navier-Stokes. J. Func. Anal. 13 (1973) 195-222. CrossRef
G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (1992).
F. Flandoli and D. Gatarek, Martingale and Stationary Solutions for Navier-Stokes Equations, Preprints di Matematica - n° 14 (1994).
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam (1981).
I. Karatzas and S.E. Shereve, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York (1988).
J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North Holland (1977).
W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics, Fr. Viewig & Sohn, Braunschweig/Wiesbaden (1985).