Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T07:43:36.700Z Has data issue: false hasContentIssue false

Generalized combined field integral equationsfor the iterative solution of the three-dimensional Helmholtz equation

Published online by Cambridge University Press:  26 April 2007

Xavier Antoine
Affiliation:
Institut Élie Cartan de Nancy, Université Henri Poincaré Nancy 1, Bureau 307, BP 239, 54506 Vandoeuvre-lès-Nancy, France. [email protected] Institut National Polytechnique de Lorraine, École Nationale Supérieure des Mines de Nancy, Département de Génie Industriel, Bureau 495, Parc de Saurupt, CS 14 234, 54042 Nancy Cedex, France. [email protected]
Marion Darbas
Affiliation:
Ceremade, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France. [email protected]
Get access

Abstract

This paper addresses the derivation of new second-kind Fredholm combined field integral equations for the Krylov iterative solution of tridimensional acoustic scattering problems by a smooth closed surface. These integralequations need the introduction of suitable tangential square-root operators to regularize the formulations. Existence and uniqueness occur for these formulations. They can be interpreted asgeneralizations of the well-known Brakhage-Werner [A. Brakhage and P. Werner, Arch. Math.16 (1965) 325–329] and Combined Field Integral Equations (CFIE) [R.F. Harrington and J.R. Mautz, Arch. Elektron. Übertragungstech (AEÜ)32 (1978) 157–164].Finally, some numerical experiments are performed to test their efficiency.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alouges, F., Borel, S. and Levadoux, D., A new well-conditionned integral formulation for Maxwell Equations in three dimensions. IEEE Trans. Ant. Prop. 53 (2005) 29953004.
Amini, S. and Kirkup, S.M., Solution of Helmholtz equation in exterior domain by elementary boundary integral equations. J. Comput. Phys. 118 (1995) 208221. CrossRef
Amini, S. and Maines, N.D., Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Internat. J. Numer. Methods Engrg. 41 (1998) 875898. 3.0.CO;2-9>CrossRef
Antoine, X., Fast approximate computation of a time-harmonic scattered field using the On-Surface Radiation Condition method. IMA J. Appl. Math. 66 (2001) 83110. CrossRef
X. Antoine, Some Applications of the On-Surface Radiation Condition to the Integral Equations for Solving Electromagnetic Scattering Problems. Industrial Mathematics and Statistics, Narosa Publishing (2003).
Antoine, X. and Darbas, M., Alternative integral equations for the iterative solution of acoustic scattering problems. Quaterly J. Mech. Appl. Math. 58 (2005) 107128. CrossRef
Antoine, X., Barucq, H. and Bendali, A., Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape. J. Math. Anal. Appl. 229 (1999) 184211. CrossRef
Antoine, X., Bendali, A. and Darbas, M., Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 13101331. CrossRef
Antoine, X., M.Darbas and Y.Y. Lu, An improved surface radiation condition for high-frequency acoustics scattering problems. Comput. Meth. Appl. Mech. Eng. 195 (2006) 40604074. CrossRef
J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, Electromagnetic and acoustic scattering by simple shapes. North-Holland Publishing Compagny, Amsterdam (1969).
Brakhage, A. and Werner, P., Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16 (1965) 325329. CrossRef
Bruno, O.P. and Kunyansky, L.A., A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169 (2001) 80110. CrossRef
Bruno, O.P. and Kunyansky, L.A., Surface scattering in three dimensions: an accelerated high-order solver. P. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 29212934. CrossRef
Buffa, A. and Hiptmair, R., A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42 (2004) 621640. CrossRef
Buffa, A. and Hiptmair, R., Regularized combined field integral equations. Numer. Math. 100 (2005) 119. CrossRef
Calvo, D.C., Collins, M.D. and Dacol, D.K., A higher-order on-surface radiation condition derived from an analytic representation of a Dirichlet-to-Neumann map. IEEE. Trans. Antennas Progat. 51 (2003) 16071614. CrossRef
Campbell, S.L., Ipsen, I.C.F., Kelley, C.T., Meyer, C.D. and Xue, Z.Q., Convergence estimates for solution of integral equations with GMRES. J. Integral Equations Appl. 8 (1996) 1934. CrossRef
B. Carpintieri, I.S. Duff and L. Giraud, Experiments with sparse approximate preconditioning of dense linear problems from electromagnetic applications. Technical Report TR/PA/00/04, Cerfacs, France (2000).
Carpintieri, B., Duff, I.S. and Giraud, L., Sparse pattern selection strategies for robust Froebenius norm minimization preconditioners in electromagnetism, Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications (Minneapolis, MN, 1999). Numer. Lin. Alg. Appl. 7 (2000) 667685.
G. Chen and J. Zhou, Boundary Element Methods. Academic Press, Harcourt Brace Jovanovitch, Publishers (1992).
Chen, K., On a class of preconditioning methods for dense linear systems from boundary elements. SIAM J. Sci. Comput. 20 (1998) 684698. CrossRef
Chen, K., Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems. Electron. Trans. Numer. Anal. 8 (1999) 138153.
Chen, K., An analysis of sparse approximate inverse preconditioners for boundary elements. SIAM J. Matrix Anal. Appl. 22 (2001) 19581978.
Chen, K. and Harris, P.J., Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475489. CrossRef
Chew, W.C. and Warnick, On the spectrum of the electric field integral equation and the convergence of the moment method. Internat. J. Numer. Methods Engrg. 51 (2001) 3156.
W.C. Chew, J-M. Jin, E. Michielssen and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Antennas and Propagation Library, Norwood (2001).
S.H. Christiansen and J.C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C.R. Acad. Sci. Paris, Sér. I 330 (2000) 617–622.
Christiansen, S.H. and Nédélec, J.C., A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40 (2002) 11001135. CrossRef
D. Colton and R. Kress, Integral Equations in Scattering Theory. Pure and Applied Mathematics, John Wiley and Sons, New York (1983).
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition, Applied Mathematical Sciences 93, Springer-Verlag, Berlin (1998).
M. Darbas, Préconditionneurs Analytiques de type Calderòn pour les Formulations Intégrales des Problèmes de Diffraction d'ondes. Ph.D. Thesis, Université P. Sabatier, Toulouse, France (November 2004).
Darbas, M., Generalized CFIE for the iterative solution of 3-D Maxwell Equations. Appl. Math. Lett. 19 (2006) 834839. CrossRef
Ford, J.M., An improved discrete wavelet transform preconditioner for dense matrix problems. SIAM J. Matrix Anal. Appl. 25 (2003) 642661. CrossRef
Harrington, R.F. and Mautz, J.R., H-field, E-field and combined field solution for conducting bodies of revolution. Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157164.
Ho, P.L. and Improving, Y.Y. Lu the beam propagation method for TM polarization. Opt. Quant. Electron. 35 (2003) 507519. CrossRef
Jones, D.S., Surface radiation conditions. IMA J. Appl. Math. 41 (1988) 2130. CrossRef
Jones, D.S., An approximate boundary condition in acoustics. J. Sound Vibr. 121 (1988) 3745. CrossRef
Jones, D.S., An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163193. CrossRef
Kelley, C.T. and Xue, Z.Q., GMRES and integral operators. SIAM J. Sci. Comput. 17 (1996) 217226. CrossRef
Kress, R., Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quaterly J. Mech. Appl. Math. 38 (1985) 323341. CrossRef
Kriegsmann, G.A., Taflove, A. and Umashankar, K.R., A new formulation of electromagnetic wave scattering using the on-surface radiation condition method. IEEE Trans. Antennas Propag. 35 (1987) 153161. CrossRef
D.P. Levadoux and B.L. Michielsen, Analysis of a boundary integral equation for high frequency Helmholtz equation, 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, 1–5 June (1998) 765–767.
Levadoux, D.L. and Michielsen, B.L., New integral equation formulations for wave scattering problems. ESAIM: M2AN 38 (2004) 157176. CrossRef
Lu, Y.Y. and Beam, P.L. Ho propagation method using a [(p - 1)/p] Padé approximant of the propagator. Opt. Lett. 27 (2002) 683685. CrossRef
W. Mc Lean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000).
Milinazzo, F.A., Zala, C.A., Brooke, G.H., Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101 (1997) 760766 CrossRef
Moret, I., A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal. 34 (1997) 513516. CrossRef
Rokhlin, V., Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414439. CrossRef
Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996).
Saad, Y. and Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856869. CrossRef
Steinbach, O. and Wendland, W.L., The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191216. CrossRef
Yevick, D., A guide to electric-field propagation techniques for guided-wave optics. Opt. Quant. Electron. 26 (1994) 185197. CrossRef