Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T22:46:08.737Z Has data issue: false hasContentIssue false

Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliersfor advection-diffusion problems

Published online by Cambridge University Press:  15 November 2005

Paola Causin
Affiliation:
INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt BP 105, 78153 Le Chesnay Cedex, France
Riccardo Sacco
Affiliation:
Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy. [email protected]
Carlo L. Bottasso
Affiliation:
D. Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., 30332 Atlanta GA, USA
Get access

Abstract

In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous,a static condensation procedure can becarried out, leading to a single-field nonconformingdiscretization scheme. For this latter formulation,we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis isdeveloped, proving first-order accuracy of the method in a discrete H 1-norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
Arnold, D.N. and Brezzi, F., Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 732. CrossRef
D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Engrg. 11, Springer-Verlag (2000) 89–101.
Babuska, I. and Osborn, J., Generalized finite element methods, their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510536. CrossRef
Baranger, J., Maitre, J.F. and Oudin, F., Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445465. CrossRef
Bottasso, C.L., Micheletti, S. and Sacco, R., The Discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 33913409. CrossRef
Bottasso, C.L., Micheletti, S. and Sacco, R., A multiscale formulation of the Discontinuous Petrov–Galerkin method for advective-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 28192838. CrossRef
Brezzi, F., Marini, L.D. and Pietra, P., Numerical simulation of semiconductor devices. Comput. Meths. Appl. Mech. Engrg. 75 (1989) 493514. CrossRef
Brezzi, F., Marini, L.D. and Pietra, P., Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 13421355. CrossRef
P. Causin, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in fluid mechanics. Ph.D. Thesis, Università degli Studi di Milano (2003).
P. Causin and R. Sacco, Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in continuum mechanics. in Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria. H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner Eds., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, July 7–12 (2002).
Causin, P. and Sacco, R., Discontinuous Petrov–Galerkin, A method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43 (2005) 280302. CrossRef
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978).
Cockburn, B. and Gopalakhrisnan, J., A characterization of hybridized mixed methods for second order elliptic problems. SIAM Jour. Numer. Anal. 42 (2003) 283301. CrossRef
M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO, R-3 (1973) 33–76.
Dawson, C., Godunov mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 13151332. CrossRef
Dawson, C. and Aizinger, V., Upwind-mixed methods for transport equations. Comp. Geosc. 3 (1999) 93110. CrossRef
Gopalakhrisnan, J. and Kanschat, G., A multilevel discontinuous galerkin method. Numer. Math. 95 (2003) 527550. CrossRef
Jaffré, J., Décentrage et éléments finis mixtes pour les équations de diffusion-convection. Calcolo 2 (1984) 171197. CrossRef
J.W. Jerome, Analysis of Charge Transport. Springer-Verlag, Berlin, Heidelberg (1996).
J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968).
Marini, L.D., An inexpensive method for the evaluation of the solution of the lower order Raviart–Thomas method. SIAM J. Numer. Anal. 22 (1985) 493496. CrossRef
P.A. Markowich, The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York (1986).
Micheletti, S., Sacco, R. and Saleri, F., On some mixed finite element methods with numerical integration. SIAM J. Sci. Comput. 23 (2001) 245270. CrossRef
Miller, J.J. and Wang, S., A new non-conforming Petrov–Galerkin finite element method with triangular elements for an advection-diffusion problem. IMA J. Numer. Anal. 14 (1994) 257276. CrossRef
Mizukami, A. and Hughes, T.J.R., Petrov-Galerkin, A finite element method for convection–dominated flows: an accurate upwinding technique satisfying the discrete maximum principle. Comput. Meth. Appl. Mech. Engrg. 50 (1985) 181193. CrossRef
Ohmori, K. and Ushijima, T., A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO 3 (1984) 309332.
A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, Berlin (1994).
Raviart, P.A. and Thomas, J.M., Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31-138 (1977) 391413.
J.E. Roberts and J.M. Thomas, Mixed and hybrid methods. In Finite Element Methods, Part I. P.G. Ciarlet and J.L. Lions (Eds.), North-Holland, Amsterdam 2 (1991).
H.G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, Heidelberg (1996).
Sacco, R., Gatti, E. and Gotusso, L., The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comp. Meth. Appl. Mech. Engrg. 124 (1995) 113124. CrossRef
Siegel, P., Mosé, R., Ackerer, Ph. and Jaffré, J., Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Inter. J. Numer. Methods Fluids 24 (1997) 593613. 3.0.CO;2-I>CrossRef
R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977).