Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ervin, Vincent J.
and
Ntasin, Louis N.
2005.
A posteriori error estimation and adaptive computation of viscoelastic fluid flow.
Numerical Methods for Partial Differential Equations,
Vol. 21,
Issue. 2,
p.
297.
Ervin, Vincent J.
and
Phillips, Timothy N.
2006.
Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem.
Computer Methods in Applied Mechanics and Engineering,
Vol. 195,
Issue. 19-22,
p.
2599.
Bonito, Andrea
Clément, Philippe
and
Picasso, Marco
2006.
Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 40,
Issue. 4,
p.
785.
Bonito, Andrea
Picasso, Marco
and
Laso, Manuel
2006.
Numerical simulation of 3D viscoelastic flows with free surfaces.
Journal of Computational Physics,
Vol. 215,
Issue. 2,
p.
691.
Bonito, Andrea
Clément, Philippe
and
Picasso, Marco
2007.
Mathematical and numerical analysis of a simplified time-dependent viscoelastic flow.
Numerische Mathematik,
Vol. 107,
Issue. 2,
p.
213.
Bonito, Andrea
Caboussat, Alexandre
Picasso, Marco
and
Rappaz, Jacques
2008.
Partial Differential Equations.
Vol. 16,
Issue. ,
p.
187.
Bonito, Andrea
and
Burman, Erik
2008.
A Continuous Interior Penalty Method for Viscoelastic Flows.
SIAM Journal on Scientific Computing,
Vol. 30,
Issue. 3,
p.
1156.
Scurtu, N.
and
Bänsch, E.
2010.
Influence of the Weißenberg number on the stability of Oldroyd kind fluids.
Asia-Pacific Journal of Chemical Engineering,
Vol. 5,
Issue. 4,
p.
657.
Bonito, Andrea
Clément, Philippe
and
Picasso, Marco
2011.
Numerical Methods for Non-Newtonian Fluids.
Vol. 16,
Issue. ,
p.
305.
Lukáčová–Medvid’ová, Mária
Mizerová, Hana
Notsu, Hirofumi
and
Tabata, Masahisa
2017.
Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 51,
Issue. 5,
p.
1663.
Lukáčová–Medvid’ová, Mária
Mizerová, Hana
Notsu, Hirofumi
and
Tabata, Masahisa
2017.
Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part I: A nonlinear scheme.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 51,
Issue. 5,
p.
1637.
Chen, Tsu-Fen
Lee, Hyesuk
and
Liu, Chia-Chen
2018.
A Study on the Galerkin Least-Squares Method for the Oldroyd-B Model.
Computational Methods in Applied Mathematics,
Vol. 18,
Issue. 2,
p.
181.
Caucao, Sergio
Gatica, Gabriel N.
and
Oyarzúa, Ricardo
2019.
A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem.
Numerical Methods for Partial Differential Equations,
Vol. 35,
Issue. 1,
p.
295.
Barrenechea, Gabriel R
Castillo, Ernesto
and
Codina, Ramon
2019.
Time-dependent semidiscrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation.
IMA Journal of Numerical Analysis,
Vol. 39,
Issue. 2,
p.
792.
Castillo, Ernesto
Moreno, Laura
Baiges, Joan
and
Codina, Ramon
2021.
Stabilised Variational Multi-scale Finite Element Formulations for Viscoelastic Fluids.
Archives of Computational Methods in Engineering,
Vol. 28,
Issue. 3,
p.
1987.
Codina, Ramon
and
Moreno, Laura
2021.
Analysis of a stabilized finite element approximation for a linearized logarithmic reformulation of the viscoelastic flow problem.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 55,
Issue. ,
p.
S279.