Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T21:08:15.175Z Has data issue: false hasContentIssue false

Error estimates for the Ultra Weak Variational Formulation of theHelmholtz equation

Published online by Cambridge University Press:  12 August 2008

Annalisa Buffa
Affiliation:
Istituto di Matematica Applicata e Tecnologie Informatiche, via Ferrata 1, 27100 Pavia, Italy. [email protected]
Peter Monk
Affiliation:
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA. [email protected]
Get access

Abstract

The Ultra Weak Variational Formulation (UWVF) of the Helmholtz equationprovides a variational framework suitable for discretization using plane wave solutionsof an appropriate adjoint equation. Currently convergence of the method is only proved on the boundary of the domain. However substantial computational evidence exists showing that the method also converges throughout the domain of the Helmholtz equation. In this paper we exploit the fact that the UWVF is essentially an upwind discontinuous Galerkin method to prove convergence of the solution in the special case where there is no absorbing medium present. We also provide some other estimates in the case when absorption is present, and give some simple numerical results to test the estimates. We expect that similar techniques can be used to prove error estimates for the UWVF applied to Maxwell's equations and elasticity.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M., Monk, P. and Muniz, W., Dispersive and dissipative properties of discontinuous Galerkin methods for the wave equation. J. Sci. Comput. 27 (2006) 540. CrossRef
Arnold, D., Brezzi, F., Cockburn, B. and Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 17491779. CrossRef
A. Barnett and T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comp. Phys. (to appear).
Betcke, T., GSVD, A formulation of a domain decomposition method for planar eigenvalue problems. IMA J. Numer. Anal. 27 (2007) 451478. CrossRef
O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine, France (1996).
Cessenat, O. and Després, B., Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255299. CrossRef
Cessenat, O. and Després, B., Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation. J. Comput. Acoustics 11 (2003) 227238. CrossRef
Cummings, P. and Feng, X., Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139160. CrossRef
Gamallo, P. and Astley, R., A comparison of two Trefftz-type methods: The ultraweak variational formulation and the least-squares method, for solving shortwave 2-D Helmholtz problems. Int. J. Numer. Meth. Eng. 71 (2007) 406432. CrossRef
C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambridge, UK, December (2007) http://www.newton.cam.ac.uk/preprints/NI07088.pdf.
I. Herrera, Boundary Methods: an Algebraic Theory. Pitman (1984).
Huttunen, T., Kaipio, J. and Monk, P., The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Meth. Eng. 61 (2004) 10721092. CrossRef
Huttunen, T., Monk, P. and Kaipio, J., Computational aspects of the Ultra Weak Variational Formulation. J. Comput. Phys. 182 (2002) 2746. CrossRef
Huttunen, T., Monk, P., Collino, F. and Kaipio, J., The Ultra Weak Variational Formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 17171742. CrossRef
Huttunen, T., Malinen, M. and Monk, P., Solving Maxwell's equations using the Ultra Weak Variational Formulation. J. Comput. Phys. 223 (2007) 731758. CrossRef
J. Melenk, On generalized finite element methods. Ph.D. thesis, University of Maryland, College Park, USA (1995).
Melenk, J. and Babuška, I., The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139 (1996) 289314. CrossRef
Monk, P. and Wang, D., A least squares method for the Helmholtz equation. Comput. Meth. Appl. Mech. Eng. 175 (1999) 121136. CrossRef
Stojek, M., Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Eng. 41 (1998) 831849. 3.0.CO;2-V>CrossRef
Tezaur, R. and Farhat, C., Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Eng. 66 (2006) 796815. CrossRef
E. Trefftz, Ein gegenstück zum Ritz'schen verfahren, in Proc. 2nd Int. Congr. Appl. Mech., Zurich (1926) 131–137.