Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T09:51:51.200Z Has data issue: false hasContentIssue false

Error estimates for the finite element approximationof a semilinear elliptic control problem with state constraints and finite dimensional control space

Published online by Cambridge University Press:  16 December 2009

Pedro Merino
Affiliation:
Department of Mathematics, EPN Quito, Ecuador.
Fredi Tröltzsch
Affiliation:
Institut für Mathematik, TU Berlin, Germany. [email protected]
Boris Vexler
Affiliation:
Institut für Mathematik, TU Berlin, Germany. [email protected]
Get access

Abstract

The finite element approximation of optimal control problems forsemilinear elliptic partial differential equation is considered,where the control belongs to a finite-dimensional set and stateconstraints are given in finitely many points of the domain. Underthe standard linear independency condition on the active gradientsand a strong second-order sufficient optimality condition, optimalerror estimates are derived for locally optimal controls.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allgower, E.L., Böhmer, K., Potra, F.A. and Rheinboldt, W.C., A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23 (1986) 160169. CrossRef
Alt, W., On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Opt. 12 (1984) 1527. CrossRef
Arada, N., Casas, E. and Tröltzsch, F., Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201229. CrossRef
Bermúdez, A., Gamallo, P. and Rodríguez, R., Finite element methods in local active control of sound. SIAM J. Control Optim. 43 (2004) 437465 (electronic). CrossRef
F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, USA (2000).
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York, USA (1994).
Casas, E., Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 9931006. CrossRef
Casas, E., Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state contraints. ESAIM: COCV 8 (2002) 345374. CrossRef
Casas, E., Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26 (2007) 137153. CrossRef
Casas, E. and Mateos, M., Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 14311454. CrossRef
Casas, E. and Mateos, M., Uniform convergence of the FEM. Applications to state constrained control problems. J. Comput. Appl. Math. 21 (2002) 67100.
J.C. de los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with finite-dimensional control space. Control Cybern. (to appear).
Deckelnick, M. and Hinze, M., Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 19371953. CrossRef
M. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, Proc. of ENUMATH 2007, Graz, K. Kunisch, G. Of and O. Steinbach Eds., Springer, Berlin-Heidelberg, Germany (2008) 597–604.
A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, Inc., New York, USA (1968).
Frehse, J. and Rannacher, R., Eine l1 -Fehlerabschätzung diskreter Grundlösungen in der Methode der finiten Elemente. Bonner Math. Schriften 89 (1976) 92114.
D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Germany (1998).
P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, USA (1985).
D. Klatte, A note on quantitative stability results in nonlinear optimization. Seminarbericht 90, Humboldt-Universität zu Berlin, Sektion Mathematik, Germany (1987).
D. Klatte and B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
D.G. Luenberger, Linear and Nonlinear Programming. Addison Wesley, Reading, Massachusetts, USA (1984).
K. Malanowski, Stability of solutions to convex problems of optimization, Lecture Notes Contr. Inf. Sci. 93, Springer-Verlag, Berlin, Germany (1987).
K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, A.V. Fiacco Ed., Lecture Notes to Pure and Applied Mathematics 195, Marcel Dekker, New York, USA (1998) 253–284.
Meyer, C., Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Contr. Cybern. 37 (2008) 5185.
Meyer, C., Prüfert, U. and Tröltzsch, F., On two numerical methods for state-constrained elliptic control problems. Otim. Meth. Software 22 (2007) 871899. CrossRef
Rannacher, R., Zur $l^\infty$ -Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149 (1976) 6977. CrossRef
Rannacher, R. and Vexler, B., A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44 (2005) 18441863. CrossRef
Robinson, S.M., Stability theory for systems of inequalities, II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497513. CrossRef
Robinson, S.M., Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 4362. CrossRef
Rösch, A., Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21 (2006) 121134. CrossRef
Schatz, A.H. and Wahlbin, L.B., Interior maximum norm estimates for finite element methods. Math. Comp. 31 (1977) 414442. CrossRef
Schatz, A.H. and Wahlbin, L.B., Interior maximum-norm estimates for finite element methods, part II. Math. Comp. 64 (1995) 907928.
F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen – Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden, Germany (2005).
F. Tröltzsch, On finite element error estimates for optimal control problems with elliptic PDEs, in The Proceedings of the Conference on Large Scale Scientific Computing, Sozopol, Bulgaria, June 4–8, 2009, Lect. Notes in Comp. Sci., Springer-Verlag (to appear).
Zowe, J. and Kurcyusz, S., Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 4962. CrossRef