Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-30T19:30:04.233Z Has data issue: false hasContentIssue false

A Domain Decomposition Analysisfor a Two-Scale Linear Transport Problem

Published online by Cambridge University Press:  15 November 2003

François Golse
Affiliation:
Institut Universitaire de France, Département de Mathématiques et Applications, École Normale Supérieure Paris, 45 rue d'Ulm, 75230 Paris Cedex 05, France. [email protected].
Shi Jin
Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. [email protected].
C. David Levermore
Affiliation:
Department of Mathematics, Institute of Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA. [email protected].
Get access

Abstract

We present a domain decomposition theory on an interface problemfor the linear transport equation between a diffusive and a non-diffusive region.To leading order, i.e. up to an error of the order of the mean free path in thediffusive region, the solution in the non-diffusive region is independent of thedensity in the diffusive region. However, the diffusive and the non-diffusive regionsare coupled at the interface at the next order of approximation. In particular, ouralgorithm avoids iterating the diffusion and transport solutions as is done in mostother methods — see for example Bal–Maday (2002). Our analysis is based instead on an accurate description of the boundarylayer at the interface matching the phase-space density of particles leaving thenon-diffusive region to the bulk density that solves the diffusion equation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bal, G. and Maday, Y., Coupling of Transport and Diffusion Models in Linear Transport Theory. ESAIM: M2AN 36 (2002) 6986. CrossRef
Bardos, C., Santos, R. and Sentis, R., Diffusion approximation and computation of critical size. Trans. Amer. Math. Soc. 284 (1984) 617649. CrossRef
Bensoussan, A., Lions, J.-L. and Papanicolaou, G.C., Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53157. CrossRef
J.-F. Bourgat, P. Le Tallec, B. Perthame and Y. Qiu, Coupling Boltzmann and Euler equations without overlapping, in Domain decomposition methods in science and engineering (Como, 1992). Amer. Math. Soc., Providence, RI, Contemp. Math. 157 (1994) 377–398.
Buet, C., Cordier, S., Lucquin-Desreux, B. and Mancini, S., Diffusion limit of the Lorentz model: asymptotic preserving schemes. ESAIM: M2AN 36 (2002) 631655. CrossRef
S. Chandrasekhar, Radiative Transfer. Dover, New York (1960).
R. Dautray and J.L. Lions, Analyse Mathèmatique et Calcul Numérique pour les Sciences et les Techniques. Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris (1985).
Degond, P. and Schmeiser, C., Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Transport Theory Statist. Phys. 28 (1999) 3155. CrossRef
S. Dellacherie, Kinetic fluid coupling in the field of the atomic vapor laser isotopic separation: numerical results in the case of a mono-species perfect gas, presented at the 23rd International Symposium on Rarefied Gas Dynamics, Whistler (British Columbia), July (2002).
Golse, F., Applications of the Boltzmann equation within the context of upper atmosphere vehicle aerodynamics. Comput. Methods Appl. Mech. Engrg. 75 (1989) 299-316. CrossRef
Golse, F., Knudsen layers from a computational viewpoint. Transport Theory Statist. Phys. 21 (1992) 211236. CrossRef
Golse, F., Jin, S. and Levermore, C.D., The convergence of numerical transfer schemes in diffusive regimes, I. The dicrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 13331369. CrossRef
M. Günther, P. Le Tallec, J.-P. Perlat and J. Struckmeier, Numerical modeling of gas flows in the transition between rarefied and continuum regimes. Numerical flow simulation I, (Marseille, 1997). Vieweg, Braunschweig, Notes Numer. Fluid Mech. 66 (1998) 222–241. CrossRef
Jin, S. and Levermore, C.D., The discrete-ordinate method in diffusive regimes. Transport Theory Statist. Phys. 20 (1991) 413439. CrossRef
Jin, S. and Levermore, C.D., Fully discrete numerical transfer in diffusive regimes. Transport Theory Statist. Phys. 22 (1993) 739791. CrossRef
Jin, S., Pareschi, L. and Toscani, G., Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000) 913-936. CrossRef
Klar, A., Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci. 18 (1995) 649670. CrossRef
Klar, A., Asymptotic-induced domain decomposition methods for kinetic and drift-diffusion semiconductor equations. SIAM J. Sci. Comput. 19 (1998) 20322050. CrossRef
Klar, A., An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073-1094. CrossRef
Klar, A., Neunzert, H. and Struckmeier, J., Transition from kinetic theory to macroscopic fluid equations: a problem for domain decomposition and a source for new algorithm. Transport Theory Statist. Phys. 29 (2000) 93106. CrossRef
Klar, A. and Siedow, N., Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process. European J. Appl. Math. 9 (1998) 351372. CrossRef
Larsen, E.W., Morel, J.E. and Miller, W.F., Asymptotic, Jr. solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283324. CrossRef
Lehner, J. and Wing, G.M., On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217234. CrossRef
Le Tallec, P. and Mallinger, F., Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys. 136 (1997) 5167. CrossRef
Le Tallec, P. and Tidriri, M., Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems. Math. Comp. 68 (1999) 585606. CrossRef
Tidriri, M., New models for the solution of intermediate regimes in transport theory and radiative transfer: existence theory, positivity, asymptotic analysis, and approximations. J. Statist. Phys. 104 (2001) 291325. CrossRef
N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichungen, Sitzber. Preuss. Akad. Wiss., Sitzung der phys.-math. Klasse, Berlin (1931) 696–706.