Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Del Moral, Pierre
Doucet, Arnaud
and
Singh, Sumeetpal S.
2010.
A backward particle interpretation of Feynman-Kac formulae.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 44,
Issue. 5,
p.
947.
Del Moral, Pierre
and
Hadjiconstantinou, Nicolas G.
2010.
An introduction to probabilistic methods with applications.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 44,
Issue. 5,
p.
805.
Giardina, Cristian
Kurchan, Jorge
Lecomte, Vivien
and
Tailleur, Julien
2011.
Simulating Rare Events in Dynamical Processes.
Journal of Statistical Physics,
Vol. 145,
Issue. 4,
p.
787.
Picciani, Massimiliano
Athènes, Manuel
Kurchan, Jorge
and
Tailleur, Julien
2011.
Simulating structural transitions by direct transition current sampling: The example of LJ38.
The Journal of Chemical Physics,
Vol. 135,
Issue. 3,
Simpson, Gideon
and
Luskin, Mitchell
2013.
Numerical analysis of parallel replica dynamics.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 47,
Issue. 5,
p.
1287.
Bérard, Jean
Del Moral, Pierre
and
Doucet, Arnaud
2014.
A lognormal central limit theorem for particle approximations of normalizing constants.
Electronic Journal of Probability,
Vol. 19,
Issue. none,
Cancès, Eric
2014.
Many-Electron Approaches in Physics, Chemistry and Mathematics.
p.
393.
Del Moral, Pierre
Kohn, Robert
and
Patras, Frédéric
2015.
A duality formula for Feynman–Kac path particle models.
Comptes Rendus. Mathématique,
Vol. 353,
Issue. 5,
p.
465.
Wouters, J
and
Bouchet, F
2016.
Rare event computation in deterministic chaotic systems using genealogical particle analysis.
Journal of Physics A: Mathematical and Theoretical,
Vol. 49,
Issue. 37,
p.
374002.
Del Moral, P.
Kohn, R.
and
Patras, F.
2016.
On particle Gibbs samplers.
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques,
Vol. 52,
Issue. 4,
Debrabant, Kristian
Samaey, Giovanni
and
Zieliński, Przemysław
2017.
A Micro-Macro Acceleration Method for the Monte Carlo Simulation of Stochastic Differential Equations.
SIAM Journal on Numerical Analysis,
Vol. 55,
Issue. 6,
p.
2745.
Whiteley, Nick
and
Kantas, Nikolas
2017.
Calculating Principal Eigen-Functions of Non-Negative Integral Kernels: Particle Approximations and Applications.
Mathematics of Operations Research,
Vol. 42,
Issue. 4,
p.
1007.
Del Moral, Pierre
and
Jasra, Ajay
2018.
A sharp first order analysis of Feynman–Kac particle models, Part I: Propagation of chaos.
Stochastic Processes and their Applications,
Vol. 128,
Issue. 1,
p.
332.
Tizón-Escamilla, Nicolás
Lecomte, Vivien
and
Bertin, Eric
2019.
Effective driven dynamics for one-dimensional conditioned Langevin processes in the weak-noise limit.
Journal of Statistical Mechanics: Theory and Experiment,
Vol. 2019,
Issue. 1,
p.
013201.
Ferré, Grégoire
and
Stoltz, Gabriel
2019.
Error estimates on ergodic properties of discretized Feynman–Kac semigroups.
Numerische Mathematik,
Vol. 143,
Issue. 2,
p.
261.
Legoll, Frédéric
Lelièvre, Tony
Myerscough, Keith
and
Samaey, Giovanni
2020.
Parareal computation of stochastic differential equations with time-scale separation: a numerical convergence study.
Computing and Visualization in Science,
Vol. 23,
Issue. 1-4,