Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T07:04:35.111Z Has data issue: false hasContentIssue false

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗

Published online by Cambridge University Press:  11 January 2012

Siddhartha Mishra
Affiliation:
Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway. [email protected].
Eitan Tadmor
Affiliation:
Department of Mathematics, Center of Scientific Computation and Mathematical Modeling (CSCAMM), Institute for Physical sciences and Technology (IPST), University of Maryland, 20741-4015 MD, Maryland, USA; [email protected]
Get access

Abstract

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artebrant, R. and Torrilhon, M., Increasing the accuracy of local divergence preserving schemes for MHD. J. Comput. Phys. 227 (2008) 34053427. Google Scholar
Bálbas, J. and Tadmor, E., Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics II : High-order semi-discrete schemes. SIAM. J. Sci. Comput. 28 (2006) 533560. Google Scholar
Bálbas, J., Tadmor, E. and Wu, C.C., Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics I. J. Comput. Phys. 201 (2004) 261285. Google Scholar
Balsara, D.S., Divergence free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174 (2001) 614648. Google Scholar
Balsara, D.S. and Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149 (1999) 270292. Google Scholar
Bell, J.B., Colella, P. and Glaz, H.M., A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85 (1989) 257283. Google Scholar
Bouchut, F., Klingenberg, C. and Waagan, K., A multi-wave HLL approximate Riemann solver for ideal MHD based on relaxation I- theoretical framework. Numer. Math. 108 (2007) 742. Google Scholar
Brackbill, J.U. and Barnes, D.C., The effect of nonzero DivB on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426430. Google Scholar
Brio, M. and Wu, C.C., An upwind differencing scheme for the equations of ideal MHD. J. Comput. Phys. 75 (1988) 400422. Google Scholar
Chorin, A.J., Numerical solutions of the Navier-Stokes equations. Math. Comput. 22 (1968) 745762. Google Scholar
Dai, W. and Woodward, P.R., A simple finite difference scheme for multi-dimensional magnetohydrodynamic equations. J. Comput. Phys. 142 (1998) 331369. Google Scholar
Deconnik, H., Roe, P.L. and Struijs, R., A multi-dimensional generalization of Roe’s flux difference splitter for Euler equations. Comput. Fluids 22 (1993) 215. Google Scholar
Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T. and Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002) 645673. Google Scholar
Evans, C. and Hawley, J.F., Simulation of magnetohydrodynamic flow : a constrained transport method. Astrophys. J. 332 (1998) 659. Google Scholar
Fey, M., Multi-dimensional upwingding. (I) The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159180. Google Scholar
Fey, M., Multi-dimensional upwingding.(II) Decomposition of Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181199. Google Scholar
Fuchs, F., Mishra, S. and Risebro, N.H., Splitting based finite volume schemes for ideal MHD equations. J. Comput. Phys. 228 (2009) 641660. Google Scholar
Fuchs, F., McMurry, A., Mishra, S., Risebro, N.H. and Waagan, K., Finite volume methods for wave propagation in stratified magneto-atmospheres. Commun. Comput. Phys. 7 (2010) 473509. Google Scholar
Fuchs, F., McMurry, A.D., Mishra, S., Risebro, N.H. and Waagan, K., Approximate Riemann solver and robust high-order finite volume schemes for the MHD equations in multi-dimensions. Commun. Comput. Phys. 9 (2011) 324362. Google Scholar
Gottlieb, S., Shu, C.W. and Tadmor, E., High order time discretizations with strong stability property. SIAM. Rev. 43 (2001) 89112. Google Scholar
Gurski, K.F., An HLLC-type approximate Riemann solver for ideal Magneto-hydro dynamics. SIAM. J. Sci. Comput. 25 (2004) 21652187. Google Scholar
Harten, A., Engquist, B., Osher, S. and Chakravarty, S.R., Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys. 71 (1987) 231303. Google Scholar
Kurganov, A. and Tadmor, E., New high resolution central schemes for non-linear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241282. Google Scholar
LeVeque, R.J., Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys. 131 (1997) 327353. Google Scholar
R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge (2002).
T.J. Linde, A three adaptive multi fluid MHD model for the heliosphere. Ph.D. thesis, University of Michigan, Ann-Arbor (1998).
Lukacova-Medvidova, M., Morton, K.W. and Warnecke, G., Evolution Galerkin methods for Hyperbolic systems in two space dimensions. Math. Comput. 69 (2000) 13551384. Google Scholar
Lukacova-Medvidova, M., Saibertova, J. and Warnecke, G., Finite volume evolution Galerkin methods for Non-linear hyperbolic systems. J. Comput. Phys. 183 (2003) 533562. Google Scholar
Mishra, S. and Tadmor, E., Constraint preserving schemes using potential-based fluxes. I. Multi-dimensional transport equations. Commun. Comput. Phys. 9 (2010) 688710. Google Scholar
Mishra, S. and Tadmor, E., Constraint preserving schemes using potential-based fluxes. II. Genuinely multi-dimensional systems of conservation laws. SIAM J. Numer. Anal. 49 (2011) 10231045. Google Scholar
Mignone, A. et al., Pluto : A numerical code for computational astrophysics. Astrophys. J. Suppl. 170 (2007) 228242. Google Scholar
Miyoshi, T. and Kusano, K., A multi-state HLL approximate Riemann solver for ideal magneto hydro dynamics. J. Comput. Phys. 208 (2005) 315344. Google Scholar
Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408463. Google Scholar
Noelle, S., The MOT-ICE : A new high-resolution wave propagation algorithm for multi-dimensional systems of conservation laws based on Fey’s method of transport. J. Comput. Phys. 164 (2000) 283334. Google Scholar
K.G. Powell, An approximate Riemann solver for magneto-hydro dynamics (that works in more than one space dimension). Technical report, ICASE, Langley, VA (1994) 94–24.
Powell, K.G., Roe, P.L., Linde, T.J., T.I. Gombosi and D.L. De zeeuw, A solution adaptive upwind scheme for ideal MHD. J. Comput. Phys. 154 (1999) 284309. Google Scholar
Roe, P.L. and Balsara, D.S., Notes on the eigensystem of magnetohydrodynamics. SIAM. J. Appl. Math. 56 (1996) 5767. Google Scholar
J. Rossmanith, A wave propagation method with constrained transport for shallow water and ideal magnetohydrodynamics. Ph.D. thesis, University of Washington, Seattle (2002).
Ryu, D.S., Miniati, F., Jones, T.W. and Frank, A., A divergence free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509 (1998) 244255. Google Scholar
Shu, C.W. and Osher, S., Efficient implementation of essentially non-oscillatory schemes – II. J. Comput. Phys. 83 (1989) 3278. Google Scholar
E. Tadmor, Approximate solutions of nonlinear conservation laws, in Advanced Numerical approximations of Nonlinear Hyperbolic equations, edited by A. Quarteroni. Lecture notes in Mathematics, Springer Verlag (1998) 1–149.
Torrilhon, M., Locally divergence preserving upwind finite volume schemes for magnetohyrodynamic equations. SIAM. J. Sci. Comput. 26 (2005) 11661191. Google Scholar
Torrilhon, M. and Fey, M., Constraint-preserving upwind methods for multidimensional advection equations. SIAM. J. Numer. Anal. 42 (2004) 16941728. Google Scholar
Toth, G., The DivB = 0 constraint in shock capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605652. Google Scholar
van Leer, B., Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101136. Google Scholar