Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T20:44:56.378Z Has data issue: false hasContentIssue false

The change in electric potential due to lightning

Published online by Cambridge University Press:  04 July 2008

William W. Hager
Affiliation:
Department of Mathematics, University of Florida, PO Box 118105, 32611-8105 Gainesville, Florida, USA. [email protected]; http://www.math.ufl.edu/~hager
Beyza Caliskan Aslan
Affiliation:
Department of Mathematics and Statistics, University of North Florida, 32224 Jacksonville, Florida, USA. [email protected]; http://www.unf.edu/coas/math-stat/ aslan
Get access

Abstract

The change in the electric potential due to lightning is evaluated.The potential along the lightning channel is a constant which isthe projection of the pre-flash potential along a piecewise harmoniceigenfunction which is constant along the lightning channel.The change in the potential outside the lightning channel is a harmonicfunction whose boundary conditionsare expressed in terms of the pre-flash potential andthe post-flash potential along the lightning channel.The expression for the lightning induced electric potential change isderived both for the continuous equations, and for a spatially discretizedformulation of the continuous equations.The results for the continuous equations are based on the properties ofthe eigenvalues and eigenfunctions of the following generalized eigenproblem:Find $u \in H_0^1 (\Omega)$ , $u \ne 0$ ,and $\lambda \in \mathbb{R}$ such that $\langle \nabla u, \nabla v \rangle_{\mathcal{L}} =\lambda \langle \nabla u, \nabla v \rangle_{\Omega}$ for all $v \in H_0^1 (\Omega)$ , where $\Omega \subset \mathbb{R}^n$ is a bounded domain (a box containing the thunderstorm), $\mathcal{L}$ is a subdomain (the lightning channel),and $\langle \cdot, \cdot \rangle_{\Omega}$ isthe inner product $\langle \nabla u,\nabla v\rangle_\Omega =\int_{\Omega}\nabla u\cdot\nabla v \; {{\rm d}x}.$

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
Aslan, B.C., Hager, W.W. and Moskow, S., A generalized eigenproblem for the Laplacian which arises in lightning. J. Math. Anal. Appl. 341 (2008) 10281041. CrossRef
R.F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995).
Hager, W.W., A discrete model for the lightning discharge. J. Comput. Phys. 144 (1998) 137150. CrossRef
Hager, W.W., Nisbet, J.S. and Kasha, J.R., The evolution and discharge of electric fields within a thunderstorm. J. Comput. Phys. 82 (1989) 193217. CrossRef
Hager, W.W., Nisbet, J.S., Kasha, J.R. and Shann, W.-C., Simulations of electric fields within a thunderstorm. J. Atmos. Sci. 46 (1989) 35423558. 2.0.CO;2>CrossRef
W.W. Hager, R.G. Sonnenfeld, B.C. Aslan, G. Lu, W.P. Winn and W.L. Boeck, Analysis of charge transport during lightning using balloon borne electric field sensors and LMA. J. Geophys. Res. 112 (2007) DOI: 10.1029/2006JD008187.
Lennon, C.L., LDAR: new lightning detection and ranging system. EOS Trans. AGU 56 (1975) 991.
L. Maier, C. Lennon, T. Britt and S. Schaefer, LDAR system performance and analysis, in The 6th conference on aviation weather systems, American Meteorological Society, Boston, MA (1995).
Marshall, T.C. and Stolzenburg, M., Voltages inside and just above thunderstorms. J. Geophys. Res. 106 (2001) 47574768. CrossRef
B.N. Parlett, The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ (1980).
Proctor, D.E., A hyperbolic system for obtaining VHF radio pictures of lightning. J. Geophys. Res. 76 (1971) 14781489. CrossRef
Proctor, D.E., VHF radio pictures of cloud flashes. J. Geophys. Res. 86 (1981) 40414071. CrossRef
V.A. Rakov and M.A. Uman, Lightning Physics and Effects. Cambridge University Press, Cambridge (2003).
Rison, W., Thomas, R.J., Krehbiel, P.R., Hamlin, T. and Harlin, J., GPS-based, A three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 26 (1999) 35733576. CrossRef
G. Strang, Linear Algebra and Its Applications. Thomson, Belmont, CA, 4th edn. (2006).
Thomas, R.J., Krehbiel, P.R., Rison, W., Hamlin, T., Harlin, J. and Shown, D., Observations of VHF source powers radiated by lightning. Geophys. Res. Lett. 28 (2001) 143146. CrossRef
Thomas, R.J., Krehbiel, P.R., Rison, W., Hunyady, S.J., Winn, W.P., Hamlin, T. and Harlin, J., Accuracy of the lightning mapping array. J. Geophys. Res. 109 (2004) D14207. CrossRef