Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T18:41:19.753Z Has data issue: false hasContentIssue false

The boundary behavior of a composite material

Published online by Cambridge University Press:  15 April 2002

Maria Neuss-Radu*
Affiliation:
Institut für Angewandte Mathematik, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany. ([email protected])
Get access

Abstract

In this paper, we study how solutions to elliptic problems withperiodically oscillating coefficients behave inthe neighborhood of the boundary of a domain. We extend theresults known for flat boundaries to domains with curved boundariesin the case of a layered medium. This is done by generalizing thenotion of boundary layer and by defining boundary correctors whichlead to an approximation of order ε in the energy norm.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.A. Adams, Sobolev Spaces. Academic Press, New York, San Francisco, London (1975).
R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications. 2nd edn. Appl. Math. Sci. 75 Springer-Verlag, New York (1988).
Allaire, G., Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. CrossRef
Allaire, G. and Amar, M., Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209-243. CrossRef
Babuska, I., Solution of interface problems by homogenization I. SIAM J. Math. Anal. 7 (1976) 603-634. CrossRef
Babuska, I., Solution of interface problems by homogenization II. SIAM J. Math. Anal. 7 (1976) 635-645. CrossRef
N. Bakhvalov and G. Panasenko, Homogenization: Averaging processes in periodic media. Mathematics and its Applications 36, Kluwer Academic Publishers, Dordrecht (1990).
A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978).
A. Bensoussan, J.L. Lions and G. Papanicolau, Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions on the half space, in Proc. Internat. Symposium SDE, K. Ito Ed. J. Wiley, New York (1978) 21-40.
Blanc, F. and Nazarov, S.A., Asymptotics of solutions to the Poisson problem in a perforated domain with corners. J. Math. Pures Appl. 76 (1997) 893-911. CrossRef
D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Heidelberg, New York (1983).
W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sci. Norm. Sup. Pisa, Serie IV 23 (1996) 404-465.
V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin Heidelberg, New York (1994).
J.L. Lions, Some methods in mathematical analysis of systems and their Control. Science Press, Beijing, Gordon and Breach, New York (1981).
S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, in Proc. Roy. Soc. Edinburgh., Sect A 127 6 (1997) 1263-1299.
N. Neuss, W. Jäger and G. Wittum, Homogenization and Multigrid. Preprint 1998-04, SFB 359, University of Heidelberg (1998).
Neuss-Radu, M., A result on the decay of the boundary layers in the homogenization theory. Asympto. Anal. 23 (2000) 313-328.
Nguetseng, G., A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. CrossRef
O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and Homogenization. Studies in Mathematics and its Applications 26, North-Holland, Amsterdam (1992).
J. Sanchez-Huber and E. Sanchez-Palencia, Exercices sur les méthodes asymptotiques et l'homogénéisation. Masson, Paris (1993).
E. Sanchez-Palencia, Non-homogenous media and vibration theory. Lect. Notes Phys. 127, Springer-Verlag, Berlin (1980).
J. Wloka, Partielle differentialgleichungen. Teubner-Verlag, Stuttgart (1982).