Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T08:53:39.968Z Has data issue: false hasContentIssue false

Approximation by generalized impedance boundary conditions of atransmission problem in acoustic scattering

Published online by Cambridge University Press:  15 September 2005

Xavier Antoine
Affiliation:
Université Paul Sabatier, Laboratoire de Mathématiques pour l'Industrie et la Physique (CNRS UMR 5640), UFR MIG, 118, route de Narbonne, 31062 Toulouse Cedex 4, France. [email protected]
Hélène Barucq
Affiliation:
Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques Appliquées (CNRS FRE 2570), IPRA, avenue de l'Université, 64000 Pau, France.
Get access

Abstract

This paper addresses some results on the development of an approximate methodfor computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressiblefluid. The basic idea of the method consists in using on-surface differentialoperators that locally reproduce the interior propagation phenomenon. This approach leads tointegral equation formulations with a reduced computational cost compared to standard integral formulations couplingboth the transmitted and scattered waves. Theoreticalaspects of the problem and numerical experiments are reported to analyze the efficiency ofthe method and precise its validity domain.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

X. Antoine, Conditions de Radiation sur le Bord. Ph.D. Thesis, No. d'ordre 395, Université de Pau et des Pays de l'Adour, France (1997).
Antoine, X., Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 66 (2001) 83. CrossRef
Antoine, X. and Barucq, H., On the construction of approximate boundary conditions for solving the interior problem of the acoustic scattering transmission problem, in Domain Decomposition Methods in Science and Engineering. R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau, O. Widlund, J. Xu, Eds., Springer Series. Lect. Notes Comput. Sci. Engrg. 40 (2004) 133140. CrossRef
X. Antoine, H. Barucq and L. Vernhet, Approximate solution for the scattering of a time-harmonic wave by a homogeneous dissipative obstacle. Internal Report MIP 00-20, Laboratoire MIP, Toulouse (2000).
Antoine, X., Barucq, H. and Vernhet, L., High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26 (2001) 257.
Antoine, X., Bendali, A. and Darbas, M., Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 13101331. CrossRef
X. Antoine, A. Bendali and M. Darbas, Analytic preconditioners for the boundary integral solution of the scattering of acoustic waves by open surfaces. J. Comput. Acoustics, Special Issue on High Performance Scientific Computing in Acoustics 13 (2005). To appear.
A. Bendali, Approximation par éléments Finis de surface de problèmes de diffraction des ondes électromagnétiques. Thèse de Doctorat, Université Paris VI (1984).
Bendali, A. and Souilah, M., Consistency estimates for a double-layer potential and application to the numerical analysis of the boundary-element approximation of acoustic scattering by a penetrable object. Math. Comp. 62 (1994) 65. CrossRef
B. Carpinteri, I.S. Duff and L. Giraud, Experiments with sparse preconditioning of dense problems of electromagnetic applications. Technical Report TR/PA/00/04, CERFACS, France (2000).
Carpinteri, B., Duff, I.S. and Giraud, L., Sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism. Numer. Linear Algebra Appl. 7 (2000) 667. 3.0.CO;2-X>CrossRef
J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations. North-Holland, Amsterdam/New-York (1982).
Chen, K. and Harris, P.J., Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475. CrossRef
Christiansen, S.H. and Nédélec, J.C., Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 617. CrossRef
P.G. Ciarlet, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part I). P.G. Ciarlet and J.-L. Lions, Eds., Elsevier Science Publisher, North-Holland, Amsterdam (1991).
D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Krieger Publishing Company (1992).
Costabel, M., Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613. CrossRef
Costabel, M. and Stephan, E., A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 136 (1985) 367. CrossRef
Darrigrand, E., Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation. J. Comput. Phys. 181 (2002) 126. CrossRef
Darve, E., The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98. CrossRef
Darve, E., The fast multipole method: numerical implementation. J. Comput. Phys. 160 (2000) 195. CrossRef
Djellouli, R., Farhat, C., Macedo, A. and Tezaur, R., Three-dimensional finite element calculations in acoustic solution scattering using arbitrarily convex artificial boundaries. Internat. J. Numer. Methods Engrg. 53 (2002) 1461.
Jones, D.S., An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163. CrossRef
Kleinman, R.E. and Martin, P.A., On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math. 48 (1988) 307. CrossRef
Kriegsmann, G.A., Taflove, A. and Umashankar, K.R., A new formulation of electromagnetic wave scattering using the on-surface radiation condition approach. IEEE Trans. Antennas Prop. 35 (1987) 153. CrossRef
D. Levadoux, Étude d'une équation intégrale adaptée à la résolution haute-fréquence de l'équation d'Helmholtz. Thèse de Doctorat, Université Paris VI (2001).
Levadoux, D. and Michielsen, B., Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes. ESAIM: M2AN 38 (2004) 157175. CrossRef
J.C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems. Springer-Verlag, New York. Appl. Math. Sci. 144 (2001).
Rellich, F., Über das asymptotische verhalten der lösungen von Δu + λu = 0, in unendlichen gebieten, Jahresber. Deutch. Math. Verein 53 (1943) 57.
Rokhlin, V., Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414. CrossRef
Rytov, S.M., Calcul du skin-effect par la méthode des perturbations. J. Phys. USSR 2 (1940) 233.
Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996).
Senior, T.B.A., Impedance boundary conditions for imperfectly conducting surface. Appl. Sci. Res. B. 8 (1960) 418. CrossRef
Senior, T.B.A., Approximate boundary conditions for homogeneous dielectric bodies. J. Electromagnet. Wave 9 (1995) 1227.
Senior, T.B.A., Generalized boundary conditions for scalar fields. J. Acoust. Soc. Amer. 97 (1995) 3473. CrossRef
T.B.A. Senior and J.L. Volakis, Approximate Boundary Conditions in Electromagnetics. IEE Electromagnetic Waves, Serie 41, London (1995).
Senior, T.B.A., Volakis, J.L. and Legault, S.R., Higher order impedance and absorbing boundary conditions. IEEE Trans. Antennas Prop. 45 (1997) 107. CrossRef
Steinbach, O. and Wendland, W.L., The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191. CrossRef
L. Vernhet, Approximation par éléments finis de frontière de problèmes de diffraction d'ondes avec condition d'impédance. Ph.D. Thesis, Université de Pau et des Pays de l'Adour, No. 400, France (1997).
Vernhet, L., Boundary element solution of a scattering problem involving a generalized impedance boundary condition. Math. Methods Appl. Sci. 22 (1999) 587. 3.0.CO;2-B>CrossRef
Wang, D.S., Limits and validity of the impedance boundary condition on penetrable surfaces. IEEE. Trans. Antennas Prop. 35 (1987) 453. CrossRef