Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:12:22.395Z Has data issue: false hasContentIssue false

Analysis of the hydrostatic approximation in oceanography with compression term

Published online by Cambridge University Press:  15 April 2002

Tomás Chacón Rebollo
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico Universidad de Sevilla, 41.080-Sevilla, Spain. ([email protected])
Roger Lewandowski
Affiliation:
Modal-X, Bât. G, Université Paris X, 200 avenue de la République, 92001 Nanterre, France. ([email protected])
Eliseo Chacón Vera
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico Universidad de Sevilla, 41.080-Sevilla, Spain. ([email protected])
Get access

Abstract

The hydrostatic approximation of the incompressible 3D stationaryNavier-Stokes equations is widely used in oceanography and other applied sciences. It appears through a limit process due to the anisotropy of the domain in use, an ocean, and it is usually studied as such.We consider in this paper an equivalent formulation to this hydrostatic approximation that includes Coriolis force and an additional pressure term that comes from taking into account the pressure in the state equation for the density. It therefore models a slight dependence of the density upon compression terms. We study this model as an independent mathematical object and prove an existence theorem by means of a mixed variational formulation. The proof uses a family of finite element spaces to discretize the problem coupled with a limit process that yields the solution.We finish this paper with an existence and uniqueness result for the evolutionary linear problem associated to this model. This problem includes the same additional pressure term and Coriolis force.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azerat P. and Guillén F., Équations de Navier-Stokes en bassin peu profond: l'approximation hydrostatique. Submitted for publication.
Besson, O. and Laydi, M.R., Some Estimates for the Anisotropic Navier-Stokes Equations and for the Hydrostatic Approximation. RAIRO Modél. Math. Anal. Numér. 26 (1992) 855-865. CrossRef
Bresch D. and Simon J., Modèles stationnaires de lacs et mers. Équations aux dérivées partielles et applications. Articles dédiés à J.-L. Lions. Elsevier, Paris (1998).
Bresch, D., Lemoine, J. and Simon, J., Écoulement engendré par le vent et la force de Coriolis dans un domain mince: II cas d'évolution. C. R. Acad. Sci. Paris Sér. I 327 (1998) 329-334. CrossRef
Bravo de Mansilla A., Chacón Rebollo T. and Lewandowski R., Observaciones sobre dos aplicaciones diversas del Método de los Elementos Finitos: Controlabilidad Exacta de la Ecuación Discreta del Calor y Ecuaciones Primitivas en Oceanografía, Actas de la Jornada Científica en Homenaje al Prof. Antonio Valle Sánchez (1997).
Ciarlet Ph., The Finite Element Method for Elliptic Problems. North-Holland (1978).
Gill A.-E., Atmosphere-Ocean dynamics. Academic Press (1982).
Lewandowski R., Analyse mathématique et océanographie. Masson (1997).
Lewandowski, R., Étude d'un système stationnaire linéarisé d'équations primitives avec des termes de pression additionnels. C. R. Acad. Sci. Paris Sér. I 324 (1997) 173-178. CrossRef
Lions, J.-L., Teman, S. and Wang, S., On the equations of the large scale Ocean. Nonlinearity 5 (1992) 1007-1053. CrossRef
Pedlosky J., Geophysical fluid dynamics. Springer-Verlag, New York (1987).
Teman R., Sur la stabilité et la convergence de la méthode des pas fractionnaires. Ann. Mat. Pura ed Applicata LXXIX (1968) 191-379.
Teman R., Navier-Stokes Equations. North-Holland, Elsevier (1985).
Zeidler E., Nonlinear functional analysis and its applications, II/A. Springer-Verlag (1990).
Zuur, E. and Dietrich, D.E., The, SOMS model and its application to Lake Neuchâtel. Aquatic Sci. 52 (1990) 115-129. CrossRef