Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:38:16.588Z Has data issue: false hasContentIssue false

Analysis of a semi-Lagrangian method for the spherically symmetric Vlasov-Einstein system

Published online by Cambridge University Press:  04 February 2010

Philippe Bechouche
Affiliation:
Departamento de Matemática Aplicada Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain. [email protected]
Nicolas Besse
Affiliation:
Institut de Mathématiques Elie Cartan & Institut Jean Lamour, Département Physique de la Matière et des Matériaux, Nancy-Université, Université Henri Poincaré, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France. [email protected]
Get access

Abstract

We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-Lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates are supplied. More precisely the metric coefficients converge in L and the statistical distribution function of the matter and its moments converge in L 2 with a rate of $\mathcal{O}$ t 2 + hm t), when the exact solution belongs to Hm .

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R.P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in pure and applied mathematics. Marcel Dekker, New York, USA (1992).
Andréasson, H. and Rein, G., A numerical investigation of stability states and critical phenomena for the spherically symmetric Einstein-Vlasov system. Class. Quant. Grav. 23 (2006) 36593677. CrossRef
Bastin, F. and Laubin, P., Regular compactly supported wavelets in Sobolev spaces. Duke Math. J. 87 (1996) 481508. CrossRef
Bégué, M.L., Ghizzo, A., Bertrand, P., Sonnendrücker, E. and Coulaud, O., Two dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys. 62 (1999) 367388. CrossRef
Besse, N., Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42 (2004) 350382. CrossRef
Besse, N., Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the Vlasov-Poisson system. SIAM J. Numer. Anal. 46 (2008) 639670. CrossRef
Besse, N. and Bertrand, P., Gyro-water-bag approch in nonlinear gyrokinetic turbulence. J. Comput. Phys. 228 (2009) 39733995. CrossRef
Besse, N. and Mehrenberger, M., Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comp. 77 (2008) 93123. CrossRef
Besse, N. and Sonnendrücker, E., Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191 (2003) 341376. CrossRef
Besse, N., Latu, G., Ghizzo, A., Sonnendrücker, E. and Bertrand, P., Wavelet-MRA-based, A adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys. 227 (2008) 78897916. CrossRef
C.K. Birdsall and A.B. Langdon, Plasmas physics via computer simulation. McGraw-Hill, USA (1985).
Cheng, C.Z. and Knorr, G., The integration of the Vlasov equation in configuration space. J. Comput Phys. 22 (1976) 330351. CrossRef
Choptuik, M.W., Universality and scaling in gravitational collapse of a scalar field. Phys. Rev. Lett. 70 (1993) 912. CrossRef
Choptuik, M.W. and Obarrieta, I., Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry. Phys. Rev. D 65 (2001) 024007.
Choptuik, M.W., Chmaj, T. and Bizoń, P., Critical behaviour in gravitational collapse of a Yang-Mills field. Phys. Rev. Lett. 77 (1996) 424427. CrossRef
Choquet-Bruhat, Y., Problème de Cauchy pour le système intégro-différentiel d'Einstein–Liouville. Ann. Inst. Fourier 21 (1971) 181201. CrossRef
A. Cohen, Numerical analysis of wavelet methods, Studies in mathematics and its applications 32. Elsevier, North-Holland (2003).
Dawson, J.M., Particle simulation of plasmas. Rev. Modern Phys. 55 (1983) 403447. CrossRef
Ganguly, K. and Victory, H., On the convergence for particle methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 26 (1989) 249-288. CrossRef
Glassey, R.T. and Schaeffer, J., Convergence of a particle method for the relativistic Vlasov-Maxwell system. SIAM J. Numer. Anal. 28 (1991) 125. CrossRef
Rein, G. and Rendall, A.D., Global existence of solutions of the spherically symmetric Vlasov-Einstein with small initial data. Commun. Math. Phys. 150 (1992) 561583. [Erratum. Comm. Math. Phys. 176 (1996) 475–478.] CrossRef
Rein, G. and Rodewis, T., Convergence of a Particle-In-Cell scheme for the spherically symmetric Vlasov-Einstein system. Ind. Un. Math. J. 52 (2003) 821861.
Rein, G., Rendall, A.D. and Schaeffer, J., A regularity theorem for solutions of the spherical symmetric Vlasov-Einstein system. Commun. Math. Phys. 168 (1995) 467478. CrossRef
Rein, G., Rendall, A.D. and Schaeffer, J., Critical collapse of collisionless matter-a numerical investigation. Phys. Rev. D 58 (1998) 044007. CrossRef
T. Rodewis, Numerical treatment of the symmetric Vlasov-Poisson and Vlasov-Einstein system by particle methods. Ph.D. Thesis, Mathematisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany (1999).
Schaeffer, J., Discrete approximation of the Poisson-Vlasov system. Quart. Appl. Math. 45 (1987) 5973. CrossRef
Shapiro, S.L. and Teukolsky, S.A., Relativistic stellar dynamics on computer I, Motivation and numerical methods. Astrophys. J. 298 (1985) 3457. CrossRef
Shapiro, S.L. and Teukolsky, S.A., Relativistic stellar dynamics on computer II, Physical applications. Astrophys. J. 298 (1985) 5879. CrossRef
Shapiro, S.L. and Teukolsky, S.A., Relativistic stellar dynamics on computer IV, Collapse of a stellar cluster to a black hole. Astrophys. J. 307 (1986) 575592. CrossRef
Staniforth, A. and Cote, J., Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev. 119 (1991) 22062223. 2.0.CO;2>CrossRef
Victory, H.D. and Allen, E.J., The convergence theory of particle-in-cell methods for multi-dimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 12071241. CrossRef
Victory, H.D., Tucker, G. and Ganguly, K., The convergence analysis of fully discretized particle methods for solving Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 955989. CrossRef