Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T06:42:17.705Z Has data issue: false hasContentIssue false

An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics

Published online by Cambridge University Press:  23 February 2010

Dajana Conte
Affiliation:
Dipartimento di Matematica ed Informatica, Università degli studi di Salerno, Via ponte don Melillo, 84084 Fisciano (SA), Italy. [email protected]
Christian Lubich
Affiliation:
Universität Tübingen, Mathematisches Institut, Auf der Morgenstelle 10, 72076 Tübingen, Germany. [email protected]
Get access

Abstract

This paper gives an error analysis of themulti-configuration time-dependent Hartree (MCTDH)method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this paper yields an L 2 error bound of the MCTDH approximation in terms of a best-approximation error bound in a stronger norm and of lower bounds of singular values of matrix unfoldings of the coefficient tensor. This result permits us to establish convergence of the MCTDH method to the exact wave function under appropriate conditions on the approximability of the wave function, and it points to reasons for possible failure in other cases.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, M.H., Jäckle, A., Worth, G.A. and Meyer, H.-D., The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1105. CrossRef
Friesecke, G., The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 (2003) 3571. CrossRef
R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge Univ. Press, UK (1985).
Khoromskij, B.N., Structured rank-(R 1, ..., Rd ) decomposition of function-related tensors in $\mathbb{R}^d$ . Comput. Meth. Appl. Math. 6 (2006) 194220. CrossRef
Koch, O. and Lubich, C., Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: M2AN 41 (2007) 315331. CrossRef
Koch, O. and Lubich, C., Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29 (2007) 434454. CrossRef
O. Koch and C. Lubich, Dynamical tensor approximation. Preprint (2009).
Kolda, T.G. and Tensor de, B.W. Badercompositions and applications. SIAM Rev. 51 (2009) 455500. CrossRef
Lewin, M., Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171 (2004) 83114. CrossRef
Lubich, C., On variational approximations in quantum molecular dynamics. Math. Comp. 74 (2005) 765779. CrossRef
C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Europ. Math. Soc., Zurich, Switzerland (2008).
H.-D. Meyer, F. Gatti and G.A. Worth, Eds., Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley, New York, USA (2009).
Meyer, H.-D., Manthe, U. and Cederbaum, L.S., The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 7378.
Meyer, H.-D. and Worth, G.A., Quantum molecular dynamics: propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251267. CrossRef
Raab, A., Worth, G.A., Meyer, H.-D. and Cederbaum, L.S., Molecular dynamics of pyrazine after excitation to the S 2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 110 (1999) 936946. CrossRef
B. Thaller, Visual Quantum Mechanics. Springer, New York, USA (2000).
Wang, H. and Thoss, M., Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119 (2003) 12891299. CrossRef