Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T08:16:56.615Z Has data issue: false hasContentIssue false

Thermo-visco-elasticity with rate-independent plasticityin isotropic materials undergoing thermal expansion*

Published online by Cambridge University Press:  11 October 2010

Sören Bartels
Affiliation:
Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 6, 53115 Bonn, Germany. [email protected]
Tomáš Roubíček
Affiliation:
Mathematical Institute, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic. Institute of Thermomechanics of the ASCR, Dolejškova 5, 182 00 Praha 8, Czech Republic.
Get access

Abstract

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticitywith hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effectsand through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent modelis proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive limit passage. Computational 3D simulations illustrate an implementation of the method as well as physical effects of residual stresses substantially depending on rate of heat treatment.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agelet de, C. Saracibar, M. Cervera and M. Chiumenti, On the formulation of coupled thermoplastic problems with phase-change. Int. J. Plasticity 15 (1999) 134.
Alberty, J., Carstensen, C. and Funken, S.A., Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117137. CrossRef
Bartels, S. and Roubíček, T., Thermoviscoplasticity at small strains. ZAMM 88 (2008) 735754. CrossRef
Boccardo, L., Dall'aglio, A., Gallouët, T. and Orsina, L., Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 (1997) 237258. CrossRef
Boccardo, L. and Gallouët, T., Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149169. CrossRef
Boccardo, L. and Gallouët, T., Summability of the solutions of nonlinear elliptic equations with right hand side measures. J. Convex Anal. 3 (1996) 361365.
B.A. Boley and J.H. Weiner, Theory of thermal stresses. J. Wiley (1960), Dover edition (1997).
S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer, second edition, New York (2002).
Bruhns, O. and Mielniczuk, J., Zur Theorie der Verzweigungen nicht-isothermer elastoplastischer Deformationen. Ing.-Arch. 46 (1977) 6574. CrossRef
Canadija, M. and Brnic, J., Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plasticity 20 (2004) 18511874.
Carstensen, C. and Klose, R., Elastoviscoplastic finite element analysis in 100 lines of Matlab. J. Numer. Math. 10 (2002) 157192.
Dal Maso, G., Francfort, G.A. and Toader, R., Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165225.
Dal Maso, G., DeSimone, A. and Mora, M.G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237291.
C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems. Chapman & Hall/CRC, Boca Raton (2005).
Francfort, G. and Mielke, A., An existence result for a rate-independent material model in the case of nonconvex energies. J. reine angew. Math. 595 (2006) 5591.
Hakansson, P., Wallin, M. and Ristinmaa, M., Comparison of isotropic hardening and kinematic hardening in thermoplasticity. Int. J. Plasticity 21 (2005) 14351460. CrossRef
S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Kluwer, Dordrecht, Part I (1997), Part II (2000).
D. Knees, On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math. Models Methods Appl. Sci. (2010) DOI: 10.1142/S0218202510004805.
G.A. Maughin, The Thermomechanics of Plasticity and Fracture. Cambridge Univ. Press, Cambridge (1992).
Miehe, C., A theory of large-strain isotropic thermoplasticity based on metric transformation tensor. Archive Appl. Mech. 66 (1995) 4564.
A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations: Evolut. Diff. Eqs., C. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam (2005) 461–559.
Mielke, A. and Roubíček, T., Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN 43 (2009) 399428. CrossRef
A. Mielke and and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Models of continuum mechanics in analysis and engineering, H.-D. Alber, R. Balean and R. Farwing Eds., Shaker Ver., Aachen (1999) 117–129.
Mielke, A. and Theil, F., On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11 (2004) 151189.
Mielke, A., Roubíček, T. and Stefanelli, U., Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. PDE 31 (2008) 387416. CrossRef
Nicholson, T.D.W., Large deformation theory of coupled thermoplasticity including kinematic hardening. Acta Mech. 142 (2000) 207222. CrossRef
Rosakis, P., Rosakis, A.J., Ravichandran, G. and Hodowany, J., A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48 (2000) 581607. CrossRef
T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005).
Roubíček, T., Thermo-visco-elasticity at small strains with L 1-data. Quart. Appl. Math. 67 (2009) 4771. CrossRef
Roubíček, T., Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32 (2009) 825862.
Roubíček, T., Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42 (2010) 256297. CrossRef
Srikanth, A. and Zabaras, N., A computational model for the finite element analysis of thermoplasticity coupled with ductile damage at fonite strains. Int. J. Numer. Methods Eng. 45 (1999) 15691605. 3.0.CO;2-P>CrossRef
Yang, Q., Stainier, L. and Ortiz, M., A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54 (2006) 401424. CrossRef
Ziegler, H., A modification of Prager's hardening rule. Quart. Appl. Math. 17 (1959) 5565. CrossRef