Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T17:13:51.057Z Has data issue: false hasContentIssue false

On the modeling of thetransport of particlesin turbulent flows

Published online by Cambridge University Press:  15 August 2004

Thierry Goudon
Affiliation:
Laboratoire Paul Painlevé U.M.R. 8524, CNRS, Université des Sciences et Technologies de Lille, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France. [email protected].
Frédéric Poupaud
Affiliation:
Laboratoire J.A. Dieudonné U.M.R. 6621, CNRS, Université Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France. [email protected].
Get access

Abstract

We investigate different asymptotic regimesfor Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthonnaud, P., Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés. C. R. Acad. Sci. 331 (2000) 651654. CrossRef
M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires. Thèse Université de Nice-Sophia Antipolis (Novembre 2002).
J.R. Brock and G.M. Hidy, The dynamics of aerocolloidal systems. Pergamon Press (1970).
Caflisch, R. and Papanicolaou, G., Dynamic theory of suspensions with Brownian effects. SIAM J. Appl. Math. 43 (1983) 885906. CrossRef
Clouet, J.F. and Domelevo, K., Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7 (1997) 239263. CrossRef
L. Desvillettes, About the modeling of complex flows by gas-particles methods, Proceedings of the workshop “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows”, Cargèse, France (2000).
Domelevo, K. and Vignal, M.-H., Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. 332 (2001) 863868. CrossRef
K. Domelevo and P. Villedieu, Work in preparation. Personal communication.
Gavrilyuck, S. and Teshukhov, V., Kinetic model for the motion of compressible bubbles in a perfect fluid. Eur. J. Mech. B/Fluids 21 (2002) 469491.
F. Golse, in From kinetic to macroscopic models in Kinetic equations and asymptotic theory, B. Perthame and L. Desvillettes Eds., Gauthier-Villars, Ser. Appl. Math. 4 (2000) 41–121.
Goudon, T., Asymptotic problems for a kinetic model of two-phase flow. Proc. Royal Soc. Edimburgh 131 (2001) 13711384. CrossRef
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Light particles regime. Preprint.
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodymamic limit for the Vlasov-Navier-Stokes system: Fine particles regime. Preprint.
Hamdache, K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Ind. Appl. Math. 15 (1998) 5174. CrossRef
Herrero, H., Lucquin-Desreux, B. and Perthame, B., On the motion of dispersed balls in a potential flow: a kinetic description of the added mass effect. SIAM J. Appl. Math. 60 (1999) 6183. CrossRef
Jabin, P.-E., Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations 25 (2000) 541557. CrossRef
Jabin, P.-E., Macroscopic limit of Vlasov type equations with friction. Ann. IHP Anal. Non Linéaire 17 (2000) 651672. CrossRef
P.-E. Jabin and B. Perthame, in Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo and M. Pulvirenti Eds., Birkhäuser (2000) 111–147.
Kramer, P. and Majda, A., Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Physics Reports 314 (1999) 237574.
Kubo, R., Stochastic Liouville equations. J. Math. Phys. 4 (1963) 174183. CrossRef
G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. Preprint.
O'Rourke, P.J., Statistical properties and numerical implementation of a model for droplets dispersion in a turbulent gas. J. Comp. Phys. 83 (1989) 345360. CrossRef
Poupaud, F. and Vasseur, A., Classical and quantum transport in random media. J. Math. Pures Appl. 82 (2003) 711748. CrossRef
Russo, G. and Smereka, P., Kinetic theory for bubbly flows I, II. SIAM J. Appl. Math. 56 (1996) 327371. CrossRef
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid mechanics, S. Friedlander and D. Serre Eds., North-Holland (2002).
F.A. Williams, Combustion theory. Benjamin Cummings Publ., 2nd edn. (1985).
Zaichik, L.I., A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11 (1999) 15211534. CrossRef