Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T06:27:07.286Z Has data issue: false hasContentIssue false

Mixed discontinuous Galerkin approximationof the Maxwell operator: The indefinite case

Published online by Cambridge University Press:  15 August 2005

Paul Houston
Affiliation:
Department of Mathematics, University of Leicester, Leicester LE1 7RH, England. [email protected]
Ilaria Perugia
Affiliation:
Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy. [email protected]
Anna Schneebeli
Affiliation:
Department of Mathematics, University of Basel, Rheinsprung 21, 4051 Basel, Switzerland. [email protected]
Dominik Schötzau
Affiliation:
Mathematics Department, University of British Columbia, 121-1984 Mathematics Road, Vancouver V6T 1Z2, Canada. [email protected]
Get access

Abstract

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp.22 (2005) 325–356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg.191 (2002) 4675–4697]. We show the well-posedness of this approach and derive optimal a priori error estimates in the energy-norm as well as the L2-norm. The theoretical results are confirmed in a series of numerical experiments.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. and Coyle, J., Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 67096733. CrossRef
Amrouche, C., Bernardi, C., Dauge, M. and Girault, V., Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823864. 3.0.CO;2-B>CrossRef
Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 17491779. CrossRef
Boffi, D. and Gastaldi, L., Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293305. CrossRef
S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994).
Chen, Z., Du, Q. and Zou, J., Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 15421570. CrossRef
P.G. Ciarlet, The finite element method for elliptic problems. North–Holland, Amsterdam (1978).
Demkowicz, L. and Vardapetyan, L., Modeling of electromagnetic absorption/scattering problems using hp–adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103124. CrossRef
Fernandes, P. and Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957991. CrossRef
Hiptmair, R., Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237339.
P. Houston, I. Perugia and D. Schötzau, hp-DGFEM for Maxwell's equations, in Numerical Mathematics and Advanced Applications ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, Eds., Springer-Verlag (2003) 785–794.
Houston, P., Perugia, I. and Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434459. CrossRef
Houston, P., Perugia, I. and Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325356.
P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518.
Karakashian, O.A. and Pascal, F., A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 23742399. CrossRef
J. L. Lions and E. Magenes, Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968).
Monk, P., A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243261. CrossRef
P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, New York (2003).
P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127–141.
Nédélec, J.C., A new family of mixed finite elements in $\mathbb{R}^3 $ . Numer. Math. 50 (1986) 5781. CrossRef
Perugia, I. and Schötzau, D., The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 11791214. CrossRef
Perugia, I., Schötzau, D. and Monk, P., Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 46754697. CrossRef
Schatz, A., An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959962. CrossRef
Vardapetyan, L. and Demkowicz, L., hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331344. CrossRef