Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
da Veiga, L. Beirão
Lipnikov, K.
and
Manzini, G.
2010.
Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes.
SIAM Journal on Numerical Analysis,
Vol. 48,
Issue. 4,
p.
1419.
da Veiga, L. Beirão
Lipnikov, K.
and
Manzini, G.
2011.
Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes.
SIAM Journal on Numerical Analysis,
Vol. 49,
Issue. 5,
p.
1737.
Lipnikov, K.
Manzini, G.
Brezzi, F.
and
Buffa, A.
2011.
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes.
Journal of Computational Physics,
Vol. 230,
Issue. 2,
p.
305.
Beirão da Veiga, L.
and
Mora, D.
2011.
A mimetic discretization of the Reissner–Mindlin plate bending problem.
Numerische Mathematik,
Vol. 117,
Issue. 3,
p.
425.
Lipnikov, K.
Manzini, G.
and
Svyatskiy, D.
2011.
Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems.
Journal of Computational Physics,
Vol. 230,
Issue. 7,
p.
2620.
BEIRÃO DA VEIGA, L.
BREZZI, F.
CANGIANI, A.
MANZINI, G.
MARINI, L. D.
and
RUSSO, A.
2013.
BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS.
Mathematical Models and Methods in Applied Sciences,
Vol. 23,
Issue. 01,
p.
199.
da Veiga, L. Beira͂o
Brezzi, F.
and
Marini, L. D.
2013.
Virtual Elements for Linear Elasticity Problems.
SIAM Journal on Numerical Analysis,
Vol. 51,
Issue. 2,
p.
794.
Antonietti, Paola F.
Bigoni, Nadia
and
Verani, Marco
2013.
Mimetic Discretizations of Elliptic Control Problems.
Journal of Scientific Computing,
Vol. 56,
Issue. 1,
p.
14.
Beirão da Veiga, Lourenço
Lovadina, Carlo
and
Mora, David
2013.
Numerical results for mimetic discretization of Reissner–Mindlin plate problems.
Calcolo,
Vol. 50,
Issue. 3,
p.
209.
Ahmad, B.
Alsaedi, A.
Brezzi, F.
Marini, L.D.
and
Russo, A.
2013.
Equivalent projectors for virtual element methods.
Computers & Mathematics with Applications,
Vol. 66,
Issue. 3,
p.
376.
Antonietti, Paola F.
da Veiga, Lourenco Beira͂o
Lovadina, Carlo
and
Verani, Marco
2013.
Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems.
SIAM Journal on Numerical Analysis,
Vol. 51,
Issue. 1,
p.
654.
Antonietti, P. F.
Beirão da Veiga, L.
Bigoni, N.
and
Verani, M.
2014.
Mimetic finite differences for nonlinear and control problems.
Mathematical Models and Methods in Applied Sciences,
Vol. 24,
Issue. 08,
p.
1457.
Lipnikov, K.
and
Manzini, G.
2014.
A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation.
Journal of Computational Physics,
Vol. 272,
Issue. ,
p.
360.
Veiga, L. Beirão da
and
Manzini, G.
2014.
ARBITRARY ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES WITH ARBITRARY REGULAR SOLUTION.
p.
2616.
Lipnikov, Konstantin
Manzini, Gianmarco
and
Shashkov, Mikhail
2014.
Mimetic finite difference method.
Journal of Computational Physics,
Vol. 257,
Issue. ,
p.
1163.
Gain, Arun L.
Talischi, Cameron
and
Paulino, Glaucio H.
2014.
On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes.
Computer Methods in Applied Mechanics and Engineering,
Vol. 282,
Issue. ,
p.
132.
Brezzi, F.
Buffa, A.
and
Manzini, G.
2014.
Mimetic scalar products of discrete differential forms.
Journal of Computational Physics,
Vol. 257,
Issue. ,
p.
1228.
Manzini, Gianmarco
Russo, Alessandro
and
Sukumar, N.
2014.
New perspectives on polygonal and polyhedral finite element methods.
Mathematical Models and Methods in Applied Sciences,
Vol. 24,
Issue. 08,
p.
1665.
Beirão da Veiga, L.
Brezzi, F.
Marini, L. D.
and
Russo, A.
2014.
The Hitchhiker's Guide to the Virtual Element Method.
Mathematical Models and Methods in Applied Sciences,
Vol. 24,
Issue. 08,
p.
1541.
Gyrya, Vitaliy
Lipnikov, Konstantin
Manzini, Gianmarco
and
Svyatskiy, Daniil
2014.
M-Adaptation in the mimetic finite difference method.
Mathematical Models and Methods in Applied Sciences,
Vol. 24,
Issue. 08,
p.
1621.