Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Guermond, J.-L.
and
Prudhomme, S.
2005.
On the construction of suitable solutions to the Navier–Stokes equations and questions regarding the definition of large eddy simulation.
Physica D: Nonlinear Phenomena,
Vol. 207,
Issue. 1-2,
p.
64.
Guermond, Jean-Luc
and
Prudhomme, Serge
2006.
Numerical Mathematics and Advanced Applications.
p.
796.
Burman, Erik
and
Fernández, Miguel A.
2007.
Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence.
Numerische Mathematik,
Vol. 107,
Issue. 1,
p.
39.
Guermond, Jean‐Luc
2008.
On the use of the notion of suitable weak solutions in CFD.
International Journal for Numerical Methods in Fluids,
Vol. 57,
Issue. 9,
p.
1153.
Boyd, John P.
2010.
The Legendre–Burgers equation: When artificial dissipation fails.
Applied Mathematics and Computation,
Vol. 217,
Issue. 5,
p.
1949.
Chen, Qingshan
Gunzburger, Max
and
Wang, Xiaoming
2010.
Partial and spectral-viscosity models for geophysical flows.
Chinese Annals of Mathematics, Series B,
Vol. 31,
Issue. 5,
p.
579.
Gunzburger, Max
Lee, Eunjung
Saka, Yuki
Trenchea, Catalin
and
Wang, Xiaoming
2010.
Analysis of Nonlinear Spectral Eddy-Viscosity Models of Turbulence.
Journal of Scientific Computing,
Vol. 45,
Issue. 1-3,
p.
294.
Viswanathan, T. M.
and
Viswanathan, G. M.
2011.
Hydrodynamics at the smallest scales: a solvability criterion for Navier–Stokes equations in high dimensions.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 369,
Issue. 1935,
p.
359.
Lee, Eunjung
and
Gunzburger, Max D.
2012.
A finite element, filtered eddy-viscosity method for the Navier–Stokes equations with large Reynolds number.
Journal of Mathematical Analysis and Applications,
Vol. 385,
Issue. 1,
p.
384.
Nazarov, Murtazo
and
Hoffman, Johan
2013.
Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods.
International Journal for Numerical Methods in Fluids,
Vol. 71,
Issue. 3,
p.
339.
Avrin, Joel
and
Xiao, Chang
2014.
Convergence results for a class of spectrally hyperviscous models of 3-D turbulent flow.
Journal of Mathematical Analysis and Applications,
Vol. 409,
Issue. 2,
p.
742.
Bardos, Claude
and
Tadmor, Eitan
2015.
Stability and spectral convergence of Fourier method for nonlinear problems: on the shortcomings of the $$2/3$$ 2 / 3 de-aliasing method.
Numerische Mathematik,
Vol. 129,
Issue. 4,
p.
749.
Chatterjee, Tanmoy
and
Peet, Yulia T.
2018.
Regularization modelling for large‐eddy simulation in wall‐bounded turbulence: An explicit filtering‐based approach.
International Journal for Numerical Methods in Fluids,
Vol. 88,
Issue. 1,
p.
1.
Hussein, Amru
2020.
Partial and full hyper-viscosity for Navier-Stokes and primitive equations.
Journal of Differential Equations,
Vol. 269,
Issue. 4,
p.
3003.
Avrin, Joel
2020.
Asymptotic Galerkin convergence and dynamical system results for the 3-D spectrally-hyperviscous Navier–Stokes equations on bounded domains.
European Journal of Mathematics,
Vol. 6,
Issue. 4,
p.
1342.
Chorfi, Nejmeddine
Abdelwahed, Mohamed
and
Berselli, Luigi C.
2020.
On the analysis of a geometrically selective turbulence model.
Advances in Nonlinear Analysis,
Vol. 9,
Issue. 1,
p.
1402.
Berselli, Luigi C.
2021.
Three-Dimensional Navier-Stokes Equations for Turbulence.
p.
131.
Sun, Zheng
and
Shu, Chi-Wang
2021.
Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity.
Communications on Applied Mathematics and Computation,
Vol. 3,
Issue. 4,
p.
671.
Xu, YiQin
and
Peet, Yulia T.
2021.
Effect of an on/off HVAC control on indoor temperature distribution and cycle variability in a single-floor residential building.
Energy and Buildings,
Vol. 251,
Issue. ,
p.
111289.
Lanthaler, S
Mishra, S
and
Weber, F
2022.
On Bayesian data assimilation for PDEs with ill-posed forward problems.
Inverse Problems,
Vol. 38,
Issue. 8,
p.
085012.