Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Iftimie, Dragos
2002.
A Uniqueness Result for the Navier--Stokes Equations with Vanishing Vertical Viscosity.
SIAM Journal on Mathematical Analysis,
Vol. 33,
Issue. 6,
p.
1483.
Chemin, Jean-Yves
Desjardins, Benoît
Gallagher, Isabelle
and
Grenier, Emmanuel
2002.
Ekman boundary layers in rotating fluids.
ESAIM: Control, Optimisation and Calculus of Variations,
Vol. 8,
Issue. ,
p.
441.
GOLSE, F.
and
SAINT-RAYMOND, L.
2003.
THE VLASOV–POISSON SYSTEM WITH STRONG MAGNETIC FIELD IN QUASINEUTRAL REGIME.
Mathematical Models and Methods in Applied Sciences,
Vol. 13,
Issue. 05,
p.
661.
Paicu, Marius
2004.
Étude asymptotique pour les fluides anisotropes en rotation rapide dans le cas périodique.
Journal de Mathématiques Pures et Appliquées,
Vol. 83,
Issue. 2,
p.
163.
Grenier, E.
2005.
Vol. 3,
Issue. ,
p.
245.
Xu, Chao-Jiang
and
Yang, Tong
2005.
Local existence with physical vacuum boundary condition to Euler equations with damping.
Journal of Differential Equations,
Vol. 210,
Issue. 1,
p.
217.
Paicu, Marius
2005.
Équation Périodique de Navier–Stokes sans Viscosité dans une Direction.
Communications in Partial Differential Equations,
Vol. 30,
Issue. 8,
p.
1107.
Dutrifoy, Alexandre
2005.
Examples of dispersive effects in non-viscous rotating fluids.
Journal de Mathématiques Pures et Appliquées,
Vol. 84,
Issue. 3,
p.
331.
Selmi, Ridha
2006.
Convergence results for MHD system.
International Journal of Mathematics and Mathematical Sciences,
Vol. 2006,
Issue. 1,
Iftimie, Dragoş
and
Planas, Gabriela
2006.
Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions.
Nonlinearity,
Vol. 19,
Issue. 4,
p.
899.
Chemin, Jean-Yves
and
Zhang, Ping
2007.
On the Global Wellposedness to the 3-D Incompressible Anisotropic Navier-Stokes Equations.
Communications in Mathematical Physics,
Vol. 272,
Issue. 2,
p.
529.
Ben Ameur, Jamel
and
Selmi, Ridha
2008.
Study of Anisotropic MHD system in Anisotropic Sobolev spaces.
Annales de la Faculté des sciences de Toulouse : Mathématiques,
Vol. 17,
Issue. 1,
p.
1.
Zhang, Ting
and
Fang, Daoyuan
2008.
Global wellposed problem for the 3-D incompressible anisotropic Navier–Stokes equations.
Journal de Mathématiques Pures et Appliquées,
Vol. 90,
Issue. 5,
p.
413.
Zhang, Ting
2009.
Global Wellposed Problem for the 3-D Incompressible Anisotropic Navier-Stokes Equations in an Anisotropic Space.
Communications in Mathematical Physics,
Vol. 287,
Issue. 1,
p.
211.
Majdoub, Mohamed
and
Paicu, Marius
2009.
Uniform Local Existence for Inhomogeneous Rotating Fluid Equations.
Journal of Dynamics and Differential Equations,
Vol. 21,
Issue. 1,
p.
21.
Berselli, Luigi C.
and
Flandoli, Franco
2009.
Advances in Mathematical Fluid Mechanics.
p.
55.
Cheverry, C.
2009.
A deterministic model for the propagation of turbulent oscillations.
Journal of Differential Equations,
Vol. 247,
Issue. 9,
p.
2637.
Fang, Lin
and
Fang, Dao-yuan
2009.
A solution to parabolic system with the fractional Laplacian.
Applied Mathematics-A Journal of Chinese Universities,
Vol. 24,
Issue. 2,
p.
184.
Ngo, V.-S.
2009.
Rotating Fluids with Small Viscosity.
International Mathematics Research Notices,
Zhang, Ting
2010.
Global regularity for generalized anisotropic Navier–Stokes equations.
Journal of Mathematical Physics,
Vol. 51,
Issue. 12,