Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T00:33:02.822Z Has data issue: false hasContentIssue false

Evaluation of the condition number in linear systems arising in finiteelement approximations

Published online by Cambridge University Press:  23 February 2006

Alexandre Ern
Affiliation:
CERMICS, École nationale des ponts et chaussées, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France. [email protected]
Jean-Luc Guermond
Affiliation:
Dept. Math, Texas A&M, College Station, TX 77843-3368, USA and LIMSI (CNRS-UPR 3152), BP 133, 91403, Orsay, France. [email protected]
Get access

Abstract

This paper derives upper and lower bounds for the $\ell^p$ -conditionnumber of the stiffness matrix resulting from the finite elementapproximation of a linear, abstract model problem. Sharp estimates interms of the meshsize h are obtained. The theoretical results areapplied to finite element approximations of elliptic PDE's invariational and in mixed form, and to first-order PDE's approximatedusing the Galerkin–Least Squares technique or bymeans of a non-standard Galerkin technique in L 1(Ω). Numerical simulations are presented to illustrate thetheoretical results.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M., McLean, W. and Tran, T., The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 19011932. CrossRef
I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, MD, 1972). Academic Press, New York (1972) 1–359.
Bank, R.E. and Scott, L.R., On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26 (1989) 13831384. CrossRef
S.C. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York, Texts Appl. Math. 15 (1994).
P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978).
Croisille, J.-P., Finite volume box schemes and mixed methods. ESAIM: M2AN 34 (2000) 10871106. CrossRef
Croisille, J.-P. and Greff, I., Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 18 (2002) 355373. CrossRef
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York. Appl. Math. Ser. 159 (2004)
A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. (2005) (in press).
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986).
G.H. Golub and C.F. van Loan, Matrix Computations. John Hopkins University Press, Baltimore, second edition (1989).
Johnson, C., Nävert, U. and Pitkäranta, J., Finite element methods for linear hyperbolic equations. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285312. CrossRef
Nečas, J., Sur une méthode pour résoudre les équations aux dérivées partielles de type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa 16 (1962) 305326.
Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996).
K. Yosida, Functional Analysis, Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the sixth edition (1980).