Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T11:15:43.560Z Has data issue: false hasContentIssue false

Electrowetting of a 3D drop: numerical modellingwith electrostatic vector fields

Published online by Cambridge University Press:  23 February 2010

Patrick Ciarlet Jr.
Affiliation:
Laboratoire POEMS, UMR 7231 CNRS/ENSTA/INRIA, ENSTA ParisTech, 32 boulevard Victor, 75739 Paris Cedex 15, France. [email protected]
Claire Scheid
Affiliation:
CMA c/o Dept. of Math., University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norway. [email protected] Laboratoire Jean-Alexandre Dieudonné, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France. [email protected]
Get access

Abstract

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable for the full 3D case.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfeld, P., A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design 1 (1984) 169181. CrossRef
Berge, B., Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II 317 (1993) 157.
S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French].
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics 15. Springer-Verlag (1991).
D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005).
Buehrle, J., Herminghaus, S. and Mugele, F., Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett. 91 (2003) 086101. CrossRef
Chen, Z., Du, Q. and Zou, J., Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 15421570. CrossRef
Ciarlet, P., Augmented, Jr. formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559586. CrossRef
Ciarlet, P., Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I 336 (2003) 353358. CrossRef
Ciarlet, P., Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358365. CrossRef
Ciarlet, P., Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN 44 (2010) 75108.
P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17–351.
Costabel, M. and Dauge, M., Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93 (2002) 239277. CrossRef
M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations – Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002).
Fernandes, P. and Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci. 7 (1997) 957991. CrossRef
V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986).
A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications 48. Springer-Verlag (2005) [in French].
S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French].
P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003).
F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter 17 (2005) R705–R774.
F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976).
Nédélec, J.-C., Mixed finite elements in $\mathbb{R}^3$ . Numer. Math. 35 (1980) 315341.
S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993).
Nicaise, S. and Sändig, A.-M., General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395450. CrossRef
Papathanasiou, A. and Boudouvis, A., A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett. 86 (2005) 164102. CrossRef
Quilliet, C. and Berge, B., Electrowetting: a recent outbreak. Curr. Opin. Colloid In. 6 (2001) 3439. CrossRef
F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French].
C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French].
Scheid, C. and Witomski, P., A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model. 49 (2009) 647665. CrossRef
Sorokina, T. and Worsey, A.J., A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29 (2008) 7189. CrossRef
Vallet, M., Vallade, M. and Berge, B., Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B. 11 (1999) 583. CrossRef
Verheijen, H. and Prins, M., Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15 (1999) 6616. CrossRef
Worsey, A.J. and Piper, B., A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design 5 (1988) 177186. CrossRef