Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:24:57.271Z Has data issue: false hasContentIssue false

Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Published online by Cambridge University Press:  01 August 2009

Robert Eymard
Affiliation:
Université de Marne-la-Vallée, France. [email protected]
Raphaèle Herbin
Affiliation:
Université de Provence, France. [email protected]
Jean-Claude Latché
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. [email protected]; [email protected]
Bruno Piar
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. [email protected]; [email protected]
Get access

Abstract

We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows.Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes.Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is inf-sup stable; in addition, we prove that a stabilization involving pressure jumps only across the internal edges of the clusters yields a stable scheme with the usual collocated discretization (i.e. , in particular, with control-volume-wide constant pressures), for the Stokes and the Navier-Stokes problem.An analysis of this stabilized scheme yields the existence of the discrete solution (and uniqueness for the Stokes problem). The convergence of the approximate solution toward the solution to the continuous problem as the mesh size tends to zero is proven, provided, in particular, that the approximation of the mass balance flux is second order accurate; this condition imposes some geometrical conditions on the mesh.Under the same assumption, an error analysis is provided for the Stokes problem: it yields first-order estimates in energy norms.Numerical experiments confirm the theory and show, in addition, a second order convergence for the velocity in a discrete L2 norm.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F. Archambeau, N. Méchitoua and M. Sakiz, Code saturne: A finite volume code for turbulent flows. International Journal of Finite Volumes 1 (2004), http://www.latp.univ-mrs.fr/IJFV/.
Bern, M., Eppstein, D. and Gilbert, J., Provably good mesh generation. J. Comput. System Sci. 48 (1994) 384409. CrossRef
F. Boyer and P. Fabrie, Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques et Applications 52. Springer-Verlag (2006).
Brezzi, F. and Fortin, M., A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457491. CrossRef
Chénier, E., Eymard, R. and Touazi, O., Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows. Numer. Heat Transf. Part B: Fundam. 49 (2006) 259276. CrossRef
Chénier, E., Eymard, R., Herbin, R. and Touazi, O., Collocated finite volume schemes for the simulation of natural convective flows on unstructured meshes. Int. J. Num. Methods Fluids 56 (2008) 20452068. CrossRef
Coudière, Y., Gallouët, T. and Herbin, R., Discrete Sobolev inequalities and LP error estimates for finite volume solutions of convection diffusion equations. ESAIM: M2AN 35 (2001) 767778. CrossRef
K. Deimling, Nonlinear functional analysis. Springer-Verlag (1985).
Eymard, R. and Gallouët, T., H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal. 41 (2003) 539562. CrossRef
R. Eymard and R. Herbin, A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non-matching grids. C. R. Acad. Sci., Sér. I Math. 344 (2007) 659–662.
R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis VII. North Holland (2000) 713–1020.
R. Eymard, T. Gallouët and R. Herbin, A finite volume scheme for anisotropic diffusion problems. C. R. Acad. Sci., Sér. I Math. 339 (2004) 299–302.
Eymard, R., Herbin, R. and Latché, J.C., On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN 40 (2006) 501528. CrossRef
Eymard, R., Gallouët, T., Herbin, R. and Latché, J.-C., Analysis tools for finite volume schemes. Acta Mathematica Universitatis Comenianae 76 (2007) 111136.
Eymard, R., Herbin, R. and Latché, J.C., Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 136. CrossRef
Eymard, R., Herbin, R., Latché, J.C. and Piar, B., On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem. Calcolo 44 (2007) 219234. CrossRef
Franca, L.P. and Stenberg, R., Error analysis of some Galerkin Least Squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 16801697. CrossRef
Gallouët, T., Herbin, R. and Vignal, M.H., Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 19351972. CrossRef
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations – Theory and Algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag (1986).
J. Nečas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965).
Payne, L.E. and Weinberger, H.F., An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286292. CrossRef
B. Piar, PELICANS : Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN/DPAM/SEMIC (2004).
R. Temam, Navier-Stokes Equations, Studies in mathematics and its applications. North-Holland (1977).
Verfürth, R., Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695713. CrossRef