Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T02:17:39.806Z Has data issue: false hasContentIssue false

Bipolar Barotropic Non-Newtonian Compressible Fluids

Published online by Cambridge University Press:  15 April 2002

Šárka Matušu-Nečasová
Affiliation:
Mathematical Institute of the Academy of Sciences, Žitná 25, 11567 Prague 1, Czech Republic.
Mária Medviďová-Lukáčová
Affiliation:
Institute of Analysis and Numerics, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39 106 Magdeburg, Germany. Institute of Mathematics, Faculty of Mechanical Engineering, Technical University of Brno, Technická 2, 616 39 Brno, Czech Republic.
Get access

Abstract

We are interested in a barotropic motion of the non-Newtonian bipolarfluids .We consider a specialcase where the stress tensor is expressed in the form ofpotentials depending on e ii and $(\frac{\partiale_{ij}}{\partial x_{k}})$ .We prove theasymptotic stability of the rest state under the assumptionof the regularity of the potential forces.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988).
C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math. L(4) (1992) 779-791.
Bellout, H., Bloom, F. and Necas, J., Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differential Equations 19 (1994) 1763-1803. CrossRef
Beirão da Veiga, An L p - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys. 109 (1987) 229-248.
Cioranescu, D. and Quazar, E.H., Existence and uniqueness for fluids of second grade. Collège de France Seminars, Pitman Res. Notes Math. Ser. 109 (1984) 178-197.
Feireisl, E. and Petzeltová, H., On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math. 97 (1998) 109-116. CrossRef
E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999).
G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103.
Galdi, G.P. and Sequeira, A., Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal. 28 (1994) 297-321. CrossRef
D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990)
J. Málek , J. Necas, M. Rokyta and R. Ruzicka, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996).
Mamontov, A.E., Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity I. Siberian Math. J. 40 (1999) 351-362.
Mamontov, A.E., Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J. 40 (1999) 541-555. CrossRef
Matusu-Necasová, S and Medvi1, M.=d to 1.051d'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin 35 (1994) 467-483.
Matusu-Necasová, S., Sequeira, A. and Videman, J.H., Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci. 22 (1999) 449-460. 3.0.CO;2-G>CrossRef
Matusu-Necasová, S. and Medvi1, M.=d to 1.051d'ová-Lukácová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl. 225 (1998) 168-192.
J. Necas and M. Silhavý, Multipolar viscous fluids. Quart. Appl. Math. XLIX (1991) 247-266.
Necas, J., Novotný, A. and Silhavý, M., Global solutions to the viscous compressible barotropic multipolar gas. Theoret. Comp. Fluid Dynamics 4 (1992) 1-11. CrossRef
J. Necas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and Applications VII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244.
Neustupa, J., A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed., Pitman Res. Notes Math. Ser. 388 (1998) 86-100.
Neustupa, J., The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods Appl. Sci. 14 (1991) 93-119. CrossRef
Oldroyd, J.G., On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523-541. CrossRef
K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series 291, Longman Scientific & Technical Reports (1993).
M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987).
R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51.
W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).
M.H. Sy, Contributions à l'etude mathématique des problèmes isssus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).
C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992).