Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:39:11.406Z Has data issue: false hasContentIssue false

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

Published online by Cambridge University Press:  27 January 2010

Laura Gastaldo
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. [email protected]; [email protected]
Raphaèle Herbin
Affiliation:
Université de Provence, France. [email protected]
Jean-Claude Latché
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France. [email protected]; [email protected]
Get access

Abstract

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of a Darcy-like relation, the drift term becomes dissipative.Finally, the present algorithm preserves a constant pressure and a constant velocity through moving interfaces between phases.To ensure the stability as well as to obtain this latter property, a key ingredient is to couple the mass balance and the transport equation for the dispersed phase in an original pressure correction step.The existence of a solution to each step of the algorithm is proven; in particular, the existence of a solution to the pressure correction step is derived as a consequence of a more general existence result for discrete problems associated to the drift-flux model.Numerical tests show a near-first-order convergence rate for the scheme, both in time and space, and confirm its stability.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L 2–stable approximation of the Navier–Stokes advection operator for low-order non-conforming finite elements. IJNMF (to appear).
Baudin, M., Berthon, Ch., Coquel, F., Masson, R. and Tran, Q.H., A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411440. CrossRef
Baudin, M., Coquel, F. and Tran, Q.-H., A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914936 (electronic). CrossRef
Becker, S., Sokolichin, A. and Eigenberger, G., Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci. 49 (1994) 57475762. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
G. Chanteperdrix, Modélisation et simulation numérique d'écoulements diphasiques à interface libre. Application à l'étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Energétique et dynamique des fluides, École Nationale Supérieure de l'Aéronautique et de l'Espace, France (2004).
P.G. Ciarlet, Finite elements methods – Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–351.
M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.) 3 (1973) 33–75.
K. Deimling, Nonlinear Functional Analysis. Springer, New York, USA (1980).
Evje, S. and Fjelde, K.K., Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674701. CrossRef
Evje, S. and Fjelde, K.K., On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 14971530. CrossRef
Eymard, R., Gallouët, T., Ghilani, M. and Herbin, R., Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563594. CrossRef
R. Eymard, T Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis I, P. Ciarlet and J.L. Lions Eds., North Holland (2000) 713–1020.
Flåtten, T. and Munkejord, S.T., The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735764. CrossRef
Gallouet, T., Hérard, J.-M. and Seguin, N., A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2003) 11331159. CrossRef
Gallouët, T., Gastaldo, L., Herbin, R. and Latché, J.-C., An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303331. CrossRef
Gallouët, T., Herbin, R. and Latché, J.-C., A convergent finite-element volume scheme for the compressible Stokes problem. Part I: The isothermal case. Math. Comp. 78 (2009) 13331352. CrossRef
L. Gastaldo, R. Herbin and J.-C. Latché, A pressure correction scheme for the homogeneous two-phase flow model with two barotropic phases, in Finite Volumes for Complex Applications V – Problems and Perspectives – Aussois, France (2008) 447–454.
L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. (2009) doi:10.1093/imanum/drp006.
Guermond, J.-L. and Quartapelle, L., A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167188. CrossRef
Guermond, J.L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195 (2006) 60116045. CrossRef
Guillard, H. and Duval, F., Darcy la, Aw for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288313. CrossRef
Harlow, F.H. and Amsden, A.A., A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197213. CrossRef
D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows, in 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22–24 September (2004).
Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 5984. CrossRef
M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.L. Lions Eds., North Holland (1998).
Masella, J.-M., Faille, I. and Gallouët, T., On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 12 (1999) 133149. CrossRef
Moukalled, F., Darwish, M. and Sekar, B., A pressure-based algorithm for multi-phase flow at all speeds. J. Comput. Phys. 190 (2003) 550571. CrossRef
Rannacher, R. and Turek, S., Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97111. CrossRef
Romate, J.E., An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455477. CrossRef
Sokolichin, A. and Eigenberger, G., Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem. Eng. Sci. 54 (1999) 22732284. CrossRef
Sokolichin, A., Eigenberger, G. and Lapin, A., Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 50 (2004) 2445. CrossRef
B. Spalding, Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids 1, Swansea, Pineridge Press (1980) 139–168.
P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001).