Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T06:32:44.376Z Has data issue: false hasContentIssue false

An approximate nonlinear projection schemefor a combustion model

Published online by Cambridge University Press:  15 April 2004

Christophe Berthon
Affiliation:
MAB UMR 5466 CNRS, Université Bordeaux I, 351 cours de la libération, 33400 Talence, France. INRIA Futurs, Domaine de Voluceau-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France. [email protected].
Didier Reignier
Affiliation:
MAB UMR 5466 CNRS, Université Bordeaux I, 351 cours de la libération, 33400 Talence, France.
Get access

Abstract

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite volume methods induce large errors when approximated the convection-diffusion extracted system. To solve this difficulty, recent works propose a nonlinear projection scheme based on cancellation phenomenon of relevant dissipation rates of entropy. Unfortunately, such a property never holds in the present framework. The nonlinear projection procedures are thus extended.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R., An extension of Roe's upwind scheme to algebraic equilibrium real gas models. Comput. and Fluids 19 (1991) 171182. CrossRef
R.A. Baurle and S.S. Girimaji, An assumed PDF Turbulence-Chemistery closure with temperature-composition correlations. 37th Aerospace Sciences Meeting (1999).
C. Berthon and F. Coquel, Travelling wave solutions of a convective diffusive system with first and second order terms in nonconservation form, Hyperbolic problems: theory, numerics, applications, vol. I, Zürich (1998) 47–54, Intern. Ser. Numer. Math. 129 Birkhäuser (1999).
C. Berthon and F. Coquel, About shock layers for compressible turbulent flow models, work in preparation, preprint MAB 01-29 2001 (http://www.math.sciences.univ-nantes.fr/).
C. Berthon and F. Coquel, Nonlinear projection methods for multi-entropies Navier–Stokes systems, Innovative methods for numerical solutions of partial differential equations, Arcachon (1998), World Sci. Publishing, River Edge (2002) 278–304.
C. Berthon, F. Coquel and P. LeFloch, Entropy dissipation measure and kinetic relation associated with nonconservative hyperbolic systems (in preparation).
Colombeau, J.F., Leroux, A.Y., Noussair, A. and Perrot, B., Microscopic profiles of shock waves and ambiguities in multiplications of distributions. SIAM J. Numer. Anal. 26 (1989) 871883. CrossRef
Coquel, F. and LeFloch, P., Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory. SIAM J. Numer. Anal. 30 (1993) 675700. CrossRef
F. Coquel and C. Marmignon, A Roe-type linearization for the Euler equations for weakly ionized multi-component and multi-temperature gas. Proceedings of the AIAA 12th CFD Conference, San Diego, USA (1995).
Coquel, F. and Perthame, B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics. SIAM J. Numer. Anal. 35 (1998) 22232249. CrossRef
Dal Maso, G., LeFloch, P. and Murat, F., Definition and weak stability of a non conservative product. J. Math. Pures Appl. 74 (1995) 483548.
Forestier, A., Herard, J.M. and Louis, X., Godunov, A type solver to compute turbulent compressible flows. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 919926. CrossRef
E. Godlewski and P.A. Raviart, Hyperbolic systems of conservations laws. Springer, Appl. Math. Sci. 118 (1996).
Harten, A., Lax, P.D. and Van Leer, B., On upstream differencing and Godunov type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 3561. CrossRef
Hou, T.Y. and LeFloch, P.G., Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp. 62 (1994) 497530. CrossRef
L. Laborde, Modélisation et étude numérique de flamme de diffusion supersonique et subsonique en régime turbulent. Ph.D. thesis, Université Bordeaux I, France (1999).
Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 5984. CrossRef
B. Larrouturou and C. Olivier, On the numerical appproximation of the K-eps turbulence model for two dimensional compressible flows. INRIA report, No. 1526 (1991).
LeFloch, P.G., Entropy weak solutions to nonlinear hyperbolic systems under non conservation form. Comm. Partial Differential Equations 13 (1988) 669727.
B. Mohammadi and O. Pironneau, Analysis of the K-Epsilon Turbulence Model. Masson Eds., Rech. Math. Appl. (1994).
Raviart, P.A. and Sainsaulieu, L., A nonconservative hyperbolic system modelling spray dynamics. Part 1. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297333. CrossRef
Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357372. CrossRef
Sainsaulieu, L., Travelling waves solutions of convection-diffusion systems whose convection terms are weakly nonconservative. SIAM J. Appl. Math. 55 (1995) 15521576. CrossRef
Tadmor, E., A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2 (1986) 211219. CrossRef