Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T20:15:31.881Z Has data issue: false hasContentIssue false

A posteriori Error Estimates with Post-Processingfor Nonconforming Finite Elements

Published online by Cambridge University Press:  15 August 2002

Friedhelm Schieweck*
Affiliation:
Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany. [email protected].
Get access

Abstract

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution.Thus, for the error analysis, the existing theory from the conformingcase can be used together with some simple additional arguments.As an essential point, the property is exploited that the nonconformingfinite element space contains as a subspace a conforming finite element space of first order. This property is fulfilled for many knownnonconforming spaces. We prove local lower and global upper a posteriori error estimates for an enhanced error measure which is the discretization error in the discrete energy norm plus the error of the best representation of the exact solution by a function in the conforming space used for thepost-processing. We demonstrate that the idea to use a computed conforming approximation ofthe nonconforming solution can be applied also to derive an a posteriorierror estimate for a linear functional of the solution which representssome quantity of physical interest.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. and Oden, J.T., A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88. CrossRef
L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Preprint 27/98, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1998).
Becker, R., Braack, M., Rannacher, R. and Waguet, C., Fast and reliable solution of the Navier-Stokes equations including chemistry. Comput. Vis. Sci. 2 (1999) 107-122. CrossRef
Becker, R. and Rannacher, R., A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264.
Bernardi, C. and Girault, V., A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. CrossRef
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991).
Cai, Z., Douglas, Jr. J. and Ye, X., A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. CrossRef
C. Carstensen, S. Bartels and S. Jansche, A posteriori error estimates for nonconforming finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Report Nr. 00-13, Christian-Albrechts-Universität zu Kiel (2000).
Crouzeix, M. and Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7 (1973) 33-76.
Dari, E., Durán, R. and Padra, C., Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017-1033. CrossRef
Dari, E., Durán, R., Padra, C. and Vampa, V., A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385-400. CrossRef
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin, Heidelberg, New York (1986).
Hennart, J.-P., Jaffre, J. and Roberts, J.E., A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701-738. CrossRef
Hoppe, R.H.W. and Wohlmuth, B., Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237-263. CrossRef
V. John, A posteriori error estimators for the nonconforming P1-finite element discretization of convection-diffusion equations. Preprint 10/97, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1997). http://www-ian.math.uni-magdeburg.de/home/john/.
John, V., A posteriori L 2-error estimates for the nonconforming P 1/P 0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. CrossRef
Kanschat, G. and Suttmeier, F.-T., A posteriori error estimates for nonconforming finite element schemes. Calcolo 36 (1999) 129-141. CrossRef
R. Rannacher, Error control in finite element computations. Preprint 98-54, Universität Heidelberg, IWR (1998). http://www.iwr.uni-heidelberg.de/.
Rannacher, R., Adaptive Galerkin finite element methods for partial differential equations. J. Comput. Appl. Math. 128 (2001) 205-233. CrossRef
Rannacher, R. and Turek, S., Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. CrossRef
Schieweck, F., A parallel multigrid algorithm for solving the Navier-Stokes equations. IMPACT Comput. Sci. Eng. 5 (1993) 345-378. CrossRef
F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1996). Habilitation. http://www-ian.math.uni-magdeburg.de/home/schieweck.
F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 25/00, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (2000). http://www-ian.math.uni-magdeburg.de/home/schieweck.
Scott, L.R. and Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. CrossRef
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner series in advances in numerical mathematics, Wiley-Teubner (1996).