Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T18:25:58.383Z Has data issue: false hasContentIssue false

Stabilisation d'une poutre. Étude du taux optimal de décroissance de l'énergie élastique

Published online by Cambridge University Press:  15 September 2002

Francis Conrad
Affiliation:
Institut Elie Cartan, Université de Nancy 1, BP. 239, 54506 Vandœuvre-lès-Nancy, France; [email protected].
Fatima-Zahra Saouri
Affiliation:
Institut Elie Cartan, Université de Nancy 1, BP. 239, 54506 Vandœuvre-lès-Nancy, France; [email protected].
Get access

Abstract

We study the stability of a flexible beam clamped at one end. A mass is attached at the other end, where a control moment is applied. The boundary control is proportional to the angular velocity at the end. By spectral analysis, we prove that the optimal decay rate of the energy is given by the spectrum of the generator of the semigroup associated to the system.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Chambadal et J.-L. Ovaert, Cours de mathématiques, Algébre II. Gauthier-Villars (1972).
Chen, G., Delfour, M.C., Krall, A.M. et Payre, G., Modeling, stabilization and control of serially connected beams. SIAM J. Control Optim. 25 (1987) 526-546. CrossRef
G. Chen, S.G. Krantz, D.W. Ma, C.E. Wayne et H.H. West, The Euler-Bernoulli beam equation with boundary energy dissipation, Operator Methods for Optimal Control Problems, édité par S.J. Lee. Marcel Dekker, New York, Lecture in Pure Appl. Math. Ser. (1987) 67-96.
B. Chentouf, Contribution à la stabilité et à la stabilisation de systèmes à paramètres répartis. Thèse de l'Université de Metz (1998).
Conrad, F. et Morgül, O., On the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 36 (1998) 1962-1986. CrossRef
Gibson, J.S., A note on stabilization of infinite dimensionl linear oscillators by compact linear feedback. SIAM J. Control Optim. 18 (1980) 311-316. CrossRef
P. Grabowski, Spectral approch to well-posedness and stability analysis of hybrid feedback systems. J. Math. Systems Estimation Control (1996).
Huang, F.L., Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differential Equations 1 (1985) 43-53.
R.E. Langer, On the zeros of exponential sums and integrals. Bull. Amer. Math. Soc. (1931) 213-239.
H. Laousy, Sur quelques problèmes de stabilisation de systèmes à paramètres distribués. Thèse de l'Université de Metz (1997).
H. Laousy et B. Chentouf, On the boundary stabilization of a hybrid system, dans $\hbox{14}^{th}$ IFAC World Congress (1999).
Littman, W. et Markus, L., Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281-330. CrossRef
Rao, B., Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440-454. CrossRef
P. Rideau, Contrôle d'un assemblage de poutres flexibles par des capteurs-actionneurs ponctuels : étude du spectre du système, Thèse. École Nationale Supérieure des Mines de Paris, Sophia-Antipolis (1995).
Russell, D.L., Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods. J. Differential Equations 19 (1975) 344-370. CrossRef
F.Z. Saouri, Stabilisation d'une poutre avec contrôle force. Étude du taux optimal de décroissance de l'énergie élastique. Prépublication de l'Institut Elie Cartan, No. 47 (1997).
Shkalikov, A., Boundary problems for ordinary differential equations with parameter in the boundary conditions. J. Soviet Math. 33 (1986) 1311-1342. CrossRef