Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T22:34:07.827Z Has data issue: false hasContentIssue false

Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion

Published online by Cambridge University Press:  10 June 2014

Bernard Bonnard
Affiliation:
Institut de Mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France. [email protected]
Olivier Cots
Affiliation:
INRIA Sophia-Antipolis Méditerranée, 2004, route des Lucioles, 06902 Sophia Antipolis, France; [email protected]
Jean-Baptiste Pomet
Affiliation:
INRIA Sophia-Antipolis Méditerranée, 2004, route des Lucioles, 06902 Sophia Antipolis, France; [email protected]
Nataliya Shcherbakova
Affiliation:
Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4 allée Emile Monso, 31432 Toulouse, France; [email protected]
Get access

Abstract

The Euler−Poinsot rigid bodymotion is a standard mechanical system and it is a model for left-invariant Riemannianmetrics on SO(3). In this article using theSerret−Andoyer variables weparameterize the solutions and compute the Jacobi fields in relation with the conjugatelocus evaluation. Moreover, the metric can be restricted to a 2D-surface, and theconjugate points of this metric are evaluated using recent works on surfaces ofrevolution. Another related 2D-metric on S2 associated to the dynamics of spin particles withIsing coupling is analysed using both geometric techniques and numerical simulations.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrachev, A.A., Boscain, U. and Sigalotti, M., A Gauss–Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds. Discrete Contin. Dyn. Syst. A 20 (2008) 801-822. Google Scholar
V.I. Arnold, Mathematical Methods of Classical Mechanics, vol. 60. Translated from the Russian, edited by K. Vogtmann and A. Weinstein. 2nd edition. Grad. Texts Math. Springer-Verlag, New York (1989).
Bates, L. and Fassò, F., The conjugate locus for the Euler top. I. The axisymmetric case. Int. Math. Forum 2 (2007) 2109-2139. Google Scholar
G.D. Birkhoff, Dynamical Systems, vol. IX. AMS Colloquium Publications (1927).
A.V. Bolsinov and A.T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification. Translated from the Russian original 1999. Chapman & Hall/CRC, Boca Raton, FL (2004) 730.
Bonnard, B., Caillau, J.-B., Sinclair, R. and Tanaka, M., Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 1081-1098. Google Scholar
Bonnard, B., Caillau, J.-B. and Janin, G., Conjugate-cut loci and injectivity domains on two-spheres of revolution. ESAIM: COCV 19 (2013) 533-554. Google Scholar
Bonnard, B., Cots, O., Shcherbakova, N. and Sugny, D., The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. 51 (2010) 092705, 44. Google Scholar
Boscain, U., Charlot, G., Gauthier, J.-P., Guérin, S. and Jauslin, H.-R., Optimal Control in laser-induced population transfer for two and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. Google Scholar
Boscain, U., Chambrion, T. and Charlot, G., Nonisotropic 3-level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy. Discrete Contin. Dyn. Systems B 5 (2005) 957-990. Google Scholar
Boscain, U. and Rossi, F., Invariant Carnot-Caratheodory metrics on S 3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. Google Scholar
Caillau, J.-B., Cots, O. and Gergaud, J., Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2011) 177196. Google Scholar
D. D’Alessandro, Introduction to quantum control and dynamics. Appl. Nonlinear Sci. Ser. Chapman & Hall/CRC (2008).
H.T. Davis, Introduction to nonlinear differential and integral equations. Dover Publications Inc., New York (1962).
Gurfil, P., Elipe, A., Tangren, W. and Efroimsky, M., The Serret−Andoyer formalism in rigid-body dynamics I. Symmetries and perturbations. Regul. Chaotic Dyn. 12 (2007) 389-425. Google Scholar
Itoh, J. and Kiyohara, K., The cut loci and the conjugate loci on ellipsoids. Manuscripta Math. 114 (2004) 247-264. Google Scholar
V. Jurdjevic, Geometric Control Theory, vol. 52. Camb. Stud. Adv. Math. Cambridge University Press, Cambridge (1997).
Khaneja, N., Brockett, R. and Glaser, S.J., Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer. Phys. Rev. A 65 (2002) 032301. Google Scholar
M. Lara and S. Ferrer, Closed form Integration of the Hitzl-Breakwell problem in action-angle variables. IAA-AAS-DyCoSS1-01-02 (AAS 12-302), 27-39.
D. Lawden, Elliptic Functions and Applications, vol. 80. Appl. Math. Sci. Springer-Verlag, New York (1989).
M.H. Levitt, Spin dynamics, basis of Nuclear Magnetic Resonance, 2nd edition. John Wiley and sons (2007).
Poincaré, H., Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc. 6 (1905) 237-274. Google Scholar
L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York-London (1962).
K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, vol. 159. Camb. Tracts Math. Cambridge University Press, Cambridge (2003).
Sinclair, R. and Tanaka, M., The cut locus of a two-sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J. 59 (2007) 379-399. Google Scholar
A.M. Vershik and V.Ya. Gershkovich, Nonholonomic Dynamical Systems, Geometry of Distributions and Variational Problems. in Dynamical Systems VII. In vol. 16 of Encyclopedia of Math. Sci. Springer Verlag (1991) 10-81.
H. Yuan Geometry, optimal control and quantum computing, Ph.D. Thesis. Harvard (2006).
Yuan, H., Zeier, R. and Khaneja, N., Elliptic functions and efficient control of Ising spin chains with unequal coupling. Phys. Rev. A 77 (2008) 032340. Google Scholar