Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T03:55:24.560Z Has data issue: false hasContentIssue false

Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings

Published online by Cambridge University Press:  28 March 2008

Domenico Mucci*
Affiliation:
Dipartimento di Matematica dell'Università di Parma, Viale G. P. Usberti 53/A, 43100 Parma, Italy; [email protected]
Get access

Abstract

In this paper we study the lower semicontinuous envelope with respect tothe L 1-topology of a class of isotropic functionals with lineargrowth defined on mappings from the n-dimensional ball into  ${\mathbb R}^{N}$   that are constrained to take values into a smoothsubmanifold   ${\cal Y}$   of   ${\mathbb R}^{N}$ .

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alicandro, R. and Leone, C., 3D-2D asymptotic analysis for micromagnetic thin films. ESAIM: COCV 6 (2001) 489498. CrossRef
Alicandro, R., Corbo Esposito, A. and Leone, C., Relaxation in BV of functionals defined on Sobolev functions with values into the unit sphere. J. Convex Anal. 14 (2007) 6998.
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs. Oxford (2000).
Bethuel, F., The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153206. CrossRef
Dacorogna, B., Fonseca, I., Malý, J. and Trivisa, K., Manifold constrained variational problems. Calc. Var. 9 (1999) 185206. CrossRef
Demengel, F. and Hadiji, R., Relaxed energies for functionals on $W^{1,1}(B^n,{\mathbb S}^1)$ . Nonlinear Anal. 19 (1992) 625641. CrossRef
H. Federer, Geometric measure theory, Grundlehren math. Wissen. 153. Springer, Berlin (1969).
Fonseca, I. and Müller, S., Relaxation of quasiconvex functionals in $BV(\Omega,{\mathbb R}^p)$ for integrands $f(x,u,\nabla u)$ . Arch. Rat. Mech. Anal. 123 (1993) 149. CrossRef
Fonseca, I. and Rybka, P., Relaxation of multiple integrals in the space $BV(\Omega,{\mathbb R}^p)$ . Proc. Royal Soc. Edin. 121A (1992) 321348. CrossRef
Gagliardo, E., Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284305.
Giaquinta, M. and Mucci, D., The BV-energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006) 483548.
M. Giaquinta and D. Mucci, Maps into manifolds and currents: area and $W^{1,2}$ -, $W^{1/2}$ -, BV-energies. Edizioni della Normale, C.R.M. Series, Sc. Norm. Sup. Pisa (2006).
Giaquinta, M. and Mucci, D., Erratum and addendum to: The BV-energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007) 185194.
M. Giaquinta and D. Mucci, Relaxation results for a class of functionals with linear growth defined on manifold constrained mappings. Journal of Convex Analysis 15 (2008) (online).
Giaquinta, M., Modica, G. and Souček, J., Variational problems for maps of bounded variations with values in ${\mathbb S}^1$ . Calc. Var. 1 (1993) 87121. CrossRef
M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations, I, II. Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998).
P.M. Mariano and G. Modica, Ground states in complex bodies. ESAIM: COCV (to appear).
Reshetnyak, Y.G., Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 10391045. CrossRef