Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T18:19:28.619Z Has data issue: false hasContentIssue false

Pointwise estimates and rigidity results for entire solutions of nonlinear elliptic pde’s

Published online by Cambridge University Press:  14 March 2013

Alberto Farina
Affiliation:
LAMFA, CNRS UMR 6140, Université de Picardie Jules Verne, Faculté des Sciences, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France. [email protected]
Enrico Valdinoci
Affiliation:
Università degli Studi di Milano, Dipartimento di Matematica, via Cesare Saldini 50, 20133 Milano, Italy; [email protected]
Get access

Abstract

We prove pointwise gradient bounds for entire solutions of pde’s of the form

     ℒu(x) = ψ(x, u(x), ∇u(x)),

where ℒ is an elliptic operator (possibly singular or degenerate). Thus, we obtain some Liouville type rigidity results. Some classical results of J. Serrin are also recovered as particular cases of our approach.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, S., Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen Typus. Math. Z. 26 (1927) 551558. Google Scholar
Caffarelli, L., Garofalo, N. and Segala, F., A gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47 (1994) 14571473. Google Scholar
Castellaneta, D., Farina, A. and Valdinoci, E., A pointwise gradient estimate for solutions of singular and degenerate PDEs in possibly unbounded domains with nonnegative mean curvature. Commun. Pure Appl. Anal. 11 (2012) 19832003. Google Scholar
De Figueiredo, D.G. and Ubilla, P., Superlinear systems of second-order ODE’s. Nonlinear Anal. 68 (2008) 17651773. Google Scholar
De Figueiredo, D.G., Sánchez, J. and Ubilla, P., Quasilinear equations with dependence on the gradient. Nonlinear Anal. 71 (2009) 48624868. Google Scholar
DiBenedetto, E., C 1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827850. Google Scholar
Farina, A., Liouville-type theorems for elliptic problems, in Handbook of differential equations: stationary partial differential equations, Elsevier/North-Holland, Amsterdam. Handb. Differ. Equ. 4 (2007) 61116. Google Scholar
Farina, A. and Valdinoci, E., Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195 (2010) 10251058. Google Scholar
Farina, A. and Valdinoci, E., A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225 (2010) 28082827. Google Scholar
Farina, A. and Valdinoci, E., A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete Contin. Dyn. Syst. 30 (2011) 11391144. Google Scholar
D. Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition.
P. Hartman, Ordinary differential equations, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA. Classics Appl. Math. 38 (2002). Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA, MR0658490 (83e:34002)]. With a foreword by Peter Bates.
Modica, L., A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38 (1985) 679684. Google Scholar
Payne, L.E., Some remarks on maximum principles. J. Anal. Math. 30 (1976) 421433. Google Scholar
Serrin, J., Entire solutions of nonlinear Poisson equations. Proc. London Math. Soc. 24 (1972) 348366. Google Scholar
R.P. Sperb, Maximum principles and their applications, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Math. Sci. Eng. 157 (1981).
Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51 (1984) 126150. Google Scholar