Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T21:20:52.021Z Has data issue: false hasContentIssue false

Optimal partial regularity of minimizers of quasiconvex variational integrals

Published online by Cambridge University Press:  05 September 2007

Christoph Hamburger*
Affiliation:
Hohle Gasse 77, 53177 Bonn, Germany.
Get access

Abstract

We prove partial regularity with optimal Hölder exponent ofvector-valued minimizers u of the quasiconvex variational integral $\intF( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirectmethod of the bilinear form.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E. and Fusco, N., A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261281. CrossRef
Duzaar, F., Gastel, A. and Grotowski, J.F., Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665687. CrossRef
Evans, L.C., Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227252. CrossRef
Evans, L.C. and Gariepy, R.F., Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361371. CrossRef
Fusco, N. and Hutchinson, J., $C^{1,\alpha }$ partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985) 121143. CrossRef
M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton (1983).
M. Giaquinta, The problem of the regularity of minimizers. Proc. Int. Congr. Math., Berkeley 1986 (1987) 1072–1083.
M. Giaquinta, Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lect. Notes Math. 1357 (1988) 211–237.
Giaquinta, M. and Giusti, E., On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 3146. CrossRef
Giaquinta, M. and Giusti, E., Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285298. CrossRef
Giaquinta, M. and Giusti, E., Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. 3A (1984) 239248.
Giaquinta, M. and Ivert, P.-A., Partial regularity for minima of variational integrals. Ark. Mat. 25 (1987) 221229. CrossRef
M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185–208.
E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994).
C. Hamburger, Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 255–282.
Hamburger, C., A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math. 95 (1998) 1131. CrossRef
Hamburger, C., Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. 18 (2003) 221241. CrossRef
Hamburger, C., Partial regularity of solutions of nonlinear quasimonotone systems. Hokkaido Math. J. 32 (2003) 291316. CrossRef
Hamburger, C., Partial boundary regularity of solutions of nonlinear superelliptic systems. Boll. Unione Mat. Ital. 10B (2007) 6381.
Hong, M.-C., Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl. 149 (1987) 311328.
Kristensen, J. and Mingione, G., The singular set of $\omega$ -minima. Arch. Ration. Mech. Anal. 177 (2005) 93114. CrossRef
Kristensen, J. and Mingione, G., The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331398. CrossRef
Kristensen, J. and Mingione, G., The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007) 341369. CrossRef
Phillips, D., A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32 (1983) 117. CrossRef