No CrossRef data available.
Published online by Cambridge University Press: 15 September 2002
We consider the problem of minimizing the energy $$ E(u):= \int_{\Omega}|\nabla u(x)|^2 \, {\rm d}x + \int_{S_u \cap \Omega}\left (1 + |[u](x)|\right) \, {\rm d}H^{N - 1}(x)$$ among all functions u ∈ SBV²(Ω) for which two level sets $\{u = l_i\}$ have prescribed Lebesgue measure $\alpha_i$. Subject to this volume constraint the existence of minimizers for E(.) is proved and the asymptotic behaviour of the solutions is investigated.