Article contents
On a semilinear variational problem
Published online by Cambridge University Press: 09 October 2009
Abstract
We provide a detailed analysis of the minimizers of the functional $u \mapsto \int_{\Bbb R^n} |\nabla u|^2 + D \int_{\Bbb R^n} |u|^{\gamma}$ , $\gamma \in (0, 2)$
, subject to the constraint $\|u\|_{L^2} = 1$
. This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties of the minimizers and also study their behavior near the critical exponent 2.
Keywords
- Type
- Research Article
- Information
- ESAIM: Control, Optimisation and Calculus of Variations , Volume 17 , Issue 1 , January 2011 , pp. 86 - 101
- Copyright
- © EDP Sciences, SMAI, 2009
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027715-0323:S1292811909000384:S1292811909000384_eqnU4.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027715-0323:S1292811909000384:S1292811909000384_eqnU5.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027715-0323:S1292811909000384:S1292811909000384_eqnU4.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20161010014027715-0323:S1292811909000384:S1292811909000384_eqnU4.gif?pub-status=live)
- 9
- Cited by